A Surrogate-Assisted Evolutionary Algorithm for Space Component Thermal Layout Optimization

被引:0
|
作者
Han, Lei [1 ]
Wang, Handing [1 ]
Wang, Shuo [2 ]
机构
[1] School of Artificial Intelligence, Xidian University, Xi'an, China
[2] School of Computer Science, The University of Birmingham, Birmingham, United Kingdom
关键词
Budget control - Constrained optimization - Local search (optimization) - Network components;
D O I
暂无
中图分类号
学科分类号
摘要
In space engineering, the electronic component layout has a very important impact on the centroid stability and heat dissipation of devices. However, the expensive thermodynamic simulations in the component thermal layout optimization problems bring great challenges to the current optimization algorithms. To reduce the cost, a surrogate-assisted evolutionary algorithm with restart strategy is proposed in this work. The algorithm is consisted of the local search and global search. A restart strategy is designed to make the local search jump out of the local optimum promptly and speed up the population convergence. The proposed algorithm is compared with two state-of-the-art algorithms on the CEC2006, CEC2010, and CEC2017 benchmark problems. The experiment results show that the proposed algorithm has a high convergence speed and excellent ability to find the optimum in the expensive constrained optimization problems under the very limited computation budget. The proposed algorithm is also applied to solve an electronic component layout optimization problem. The final results demonstrate the good performance of the proposed algorithm, which is of great significance to the component layout optimization. © 2022 Lei Han et al.
引用
收藏
相关论文
共 50 条
  • [41] A surrogate-assisted multi-objective evolutionary algorithm with dimension-reduction for production optimization
    Zhao, Mengjie
    Zhang, Kai
    Chen, Guodong
    Zhao, Xinggang
    Yao, Chuanjin
    Sun, Hai
    Huang, Zhaoqin
    Yao, Jun
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 192
  • [42] A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization
    Pan, Linqiang
    He, Cheng
    Tian, Ye
    Wang, Handing
    Zhang, Xingyi
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (01) : 74 - 88
  • [43] A bagging-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Liu, Yuanchao
    Liu, Jianchang
    Tan, Shubin
    Yang, Yongkuan
    Li, Fei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 12097 - 12118
  • [44] A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Tian, Ye
    Hu, Jiaxing
    He, Cheng
    Ma, Haiping
    Zhang, Limiao
    Zhang, Xingyi
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 80
  • [45] Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
    Qinghua Gu
    Qian Wang
    Neal N. Xiong
    Song Jiang
    Lu Chen
    Complex & Intelligent Systems, 2022, 8 : 2699 - 2718
  • [46] An improved bagging ensemble surrogate-assisted evolutionary algorithm for expensive many-objective optimization
    Gu, Qinghua
    Zhang, Xiaoyue
    Chen, Lu
    Xiong, Naixue
    APPLIED INTELLIGENCE, 2022, 52 (06) : 5949 - 5965
  • [47] A Parallel Surrogate-Assisted Multi-Objective Evolutionary Algorithm for Computationally Expensive Optimization Problems
    Syberfeldt, Anna
    Grimm, Henrik
    Ng, Amos
    John, Robert I.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3177 - +
  • [48] Diversity Based Surrogate-assisted Evolutionary Algorithm for Expensive Multi-objective Optimization Problem
    Sun Z.-R.
    Huang Y.-H.
    Chen Z.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (12): : 3814 - 3828
  • [49] Generalizing Surrogate-Assisted Evolutionary Computation
    Lim, Dudy
    Jin, Yaochu
    Ong, Yew-Soon
    Sendhoff, Bernhard
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (03) : 329 - 355
  • [50] On Benchmarking Surrogate-Assisted Evolutionary Algorithms
    Volz, Vanessa
    Naujoks, Boris
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1603 - 1605