Fault Diagnosis Method for Rolling Bearing under Variable Working Conditions Using Improved Residual Neural Network

被引:0
|
作者
Zhao, Xiaoqiang [1 ,2 ,3 ]
Liang, Haopeng [1 ]
机构
[1] College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou,730050, China
[2] Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou,730050, China
[3] National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou,730050, China
关键词
Fault detection - Convolution - Roller bearings - Time domain analysis;
D O I
10.7652/xjtuxb202009002
中图分类号
学科分类号
摘要
Aiming at the bad effect of fault diagnosis of rolling bearing due to complex and changeable working environments, ambient noise influence and insufficient valid sample data, an improved residual neural network method for fault diagnosis is proposed under variable working conditions. The acquired time domain signals of rolling bearing are taken as the inputs, and according to the strong time-varying characteristic of time domain signals of rolling bearing, an improved data pooling layer based on the Inception module is constructed. To extract the feature information effectively, following the Inception module idea, the data pooling layer is constructed by three small 3×3 stacked convolutional layers in series and by adding residual connection. A kind of residual block with a skipping connecting line is designed by adding a skipping connecting line, which can enhance the learning efficiency of characteristic information. Because the dilated convolution can expand the receptive field, the normal convolution in the residual block with a skipping connecting line is replaced by a dilated block, so a dilated and residual block with skipping connecting line is designed. The neural network is designed by the two kinds of residual blocks in end-to-end connection. Compared with SVM+EMD+Hilbert envelope spectrum, BPNN+EMD+Hilbert envelope spectrum and ResNet, the results show that the average accuracy of the proposed method in the variable noise experiment is 97.34%, the accuracy in the variable load experiment is 88.83%-96.76%, which are higher than the other methods, and the average accuracy is higher than ResNet method with a lower mean variance of 0.000 6 in the variable working condition experiment, so the noise resistance and generalization ability of the proposed method are verified. © 2020, Editorial Office of Journal of Xi'an Jiaotong University. All right reserved.
引用
收藏
页码:23 / 31
相关论文
共 50 条
  • [21] Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network
    Sun, Yi
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    Liu, Qi
    [J]. 2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 421 - 425
  • [22] Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method
    An, Zenghui
    Li, Shunming
    Wang, Jinrui
    Xin, Yu
    Xu, Kun
    [J]. NEUROCOMPUTING, 2019, 352 : 42 - 53
  • [23] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [24] Class Subdomain Adaptation Network for Bearing Fault Diagnosis Under Variable Working Conditions
    Zhang, Lu
    Li, Hua
    Cui, Jie
    Li, Wei
    Wang, Xiaodong
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] Bearing fault diagnosis under variable working conditions based on deep residual shrinkage networks
    Chi, Fulin
    Yang, Xinyu
    Shao, Siyu
    Zhang, Qiang
    Zhao, Yuwei
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (04): : 1146 - 1156
  • [26] Improved capsule network method for rolling bearing fault diagnosis
    Sun, Yan
    Peng, Gaoliang
    [J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2021, 53 (01): : 23 - 28
  • [27] A rolling bearing fault diagnosis method using novel lightweight neural network
    He, Deqiang
    Liu, Chenyu
    Chen, Yanjun
    Jin, Zhenzhen
    Li, Xianwang
    Shan, Sheng
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (12)
  • [28] A fault diagnosis for rolling bearing based on multilevel denoising method and improved deep residual network
    Feng, Zhigang
    Wang, Shouqi
    Yu, Mingyue
    [J]. DIGITAL SIGNAL PROCESSING, 2023, 140
  • [29] Bearing fault diagnosis method based on improved deep residual Siamese neural network
    Qian, Chen
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    Yuan, Jianhua
    [J]. INSIGHT, 2024, 66 (03) : 174 - 181
  • [30] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li, Yibing
    Ma, Jianbo
    Jiang, Li
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193