Applying data mining techniques to predict occupational accidents in the pulp and paper industry

被引:0
|
作者
Mosquera R. [1 ]
Parra L. [2 ]
Ledesma A.J. [3 ]
Bonilla H.F. [4 ]
机构
[1] Universidad de San Buenaventura, Cali-Facultad de Ingeniería, Nuevas tecnologías trabajo y gestión-Carrera 122 # 6-65, Cali
[2] Universidad Libre, Sede Bogotá, Facultad de Derecho, Centro de Investigaciones Socio Jurídicas, Grupo de Investigación Estudios Interdisciplinarios DESC y El Mundo Del Trabajo
[3] Universidad Icesi, Cali
[4] Pontificia Universidad Javeriana, Facultad de Ingeniería, Departamento de Ingeniería Civil e Industrial, Cali
来源
Informacion Tecnologica | 2021年 / 32卷 / 01期
关键词
Bayesian nets; Data mining; Decision-making trees; Naive; Occupational accidents; Paper; Pulp;
D O I
10.4067/S0718-07642021000100133
中图分类号
学科分类号
摘要
This research study proposes a classification system to identify and prevent occupational accidents in fiber storage warehouses at a pulp and paper facility. The present analysis is based on variables including pedestrian circulation, bobcat, trailer trucks, access, pedestrian circulation zones, and handrails. The proposed methodology defines and trains the system by using occupational accident event data collected at the facility. Three different predicting algorithms are used: J48 decision-making trees, Naive Bayes, and Bayesian nets. The results show that the J48 decision-making tree algorithm accurately identifies possible occupational accidents 90% of the time. It is concluded that identifying variables involved in occupational accidents allows generating a C4.5 (J48) decision-making tree that can be used as a support tool to prevent occupational accidents. © 2021 Centro de Informacion Tecnologica. All rights reserved.
引用
收藏
页码:133 / 142
页数:9
相关论文
共 50 条
  • [41] Maintenance data collection and exploitation in Finnish paper and pulp industry
    Konola, J.
    [J]. VTT Tiedotteita - Valtion Teknillinen Tutkimuskeskus, 2000, (2058): : 3 - 25
  • [42] Rate of occupational accidents in the mining industry since 1950 -: a successful approach to prevention policy
    Breuer, J
    Höffer, EM
    Hummitzsch, W
    [J]. JOURNAL OF SAFETY RESEARCH, 2002, 33 (01) : 129 - 141
  • [44] Applying data mining techniques to improve data quality of patient records
    Gorla, N
    Bennon, CYK
    [J]. ISSUES AND TRENDS OF INFORMATION TECHNOLOGY MANAGEMENT IN CONTEMPORARY ORGANIZATIONS, VOLS 1 AND 2, 2002, : 237 - 241
  • [45] Data Mining Techniques for Recidivism Prediction: A Survey Paper
    Hashim, Emmy N.
    Nohuddin, Puteri N. E.
    [J]. ADVANCED SCIENCE LETTERS, 2018, 24 (03) : 1616 - 1618
  • [46] Data mining techniques to analyze traffic accidents data: Case application in Morocco
    Touzani, Halima Drissi
    Faquir, Sanaa
    Yahyaouy, Ali
    [J]. 2020 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS), 2020,
  • [47] Mining educational data to predict students performanceA comparative study of data mining techniques
    Khaledun Nahar
    Boishakhe Islam Shova
    Tahmina Ria
    Humayara Binte Rashid
    A. H. M. Saiful Islam
    [J]. Education and Information Technologies, 2021, 26 : 6051 - 6067
  • [48] Mining educational data to predict students performance A comparative study of data mining techniques
    Nahar, Khaledun
    Shova, Boishakhe Islam
    Ria, Tahmina
    Rashid, Humayara Binte
    Islam, A. H. M. Saiful
    [J]. EDUCATION AND INFORMATION TECHNOLOGIES, 2021, 26 (05) : 6051 - 6067
  • [49] Diagnosis of Diabetes by Applying Data Mining Classification Techniques Comparison of Three Data Mining Algorithms
    Daghistani, Tahani
    Alshammari, Riyad
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (07) : 329 - 332
  • [50] Data Mining Techniques to Predict Protein Secondary Structures
    Fayech, Sond Es
    Essoussi, Nadia
    Limam, Mohamed
    [J]. 2013 5TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND APPLIED OPTIMIZATION (ICMSAO), 2013,