Machine-Learning-Based Parameter Estimation of Gaussian Quantum States

被引:8
|
作者
Kundu N.K. [1 ,2 ]
McKay M.R. [1 ,2 ,3 ]
Mallik R.K. [4 ]
机构
[1] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay
[2] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay
[3] Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, 3010, VIC
[4] Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi
关键词
Bayes methods; Estimation; Machine learning; Metrology; Parameter estimation; Phase estimation; Quantum state;
D O I
10.1109/TQE.2021.3137559
中图分类号
学科分类号
摘要
In this article, we propose a machine-learning framework for parameter estimation of single-mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement and squeezing parameter estimation, this is achieved by introducing expectation–maximization (EM)-based algorithms, while for phase parameter estimation, an empirical Bayes method is applied. The estimated prior distribution parameters along with the observed data are used for finding the optimal Bayesian estimate of the unknown displacement, squeezing, and phase parameters. Our simulation results show that the proposed algorithms have estimation performance that is very close to that of “Genie Aided” Bayesian estimators, which assume perfect knowledge of the prior parameters. In practical scenarios, when numerical values of the prior distribution parameters are not known beforehand, our proposed methods can be used to find optimal Bayesian estimates from the observed measurement data. © 2022 IEEE. All right reserved.
引用
收藏
相关论文
共 50 条
  • [21] Machine-Learning-Based Predictive Handover
    Masri, Ahmed
    Veijalainen, Teemu
    Martikainen, Henrik
    Mwanje, Stephen
    Ali-Tolppa, Janne
    Kajo, Marton
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 648 - 652
  • [22] Machine-Learning-Based Semiparametric Time Series Conditional Variance: Estimation and Forecasting
    Dang, Justin
    Ullah, Aman
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2022, 15 (01)
  • [23] METAPHOR: a machine-learning-based method for the probability density estimation of photometric redshifts
    Cavuoti, S.
    Amaro, V.
    Brescia, M.
    Vellucci, C.
    Tortora, C.
    Longo, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (02) : 1959 - 1973
  • [24] Machine-learning-based porosity estimation from multifrequency poststack seismic data
    Jo, Honggeun
    Cho, Yongchae
    Pyrcz, Michael
    Tang, Hewei
    Fu, Pengcheng
    GEOPHYSICS, 2022, 87 (05) : M217 - M233
  • [25] Direct Fidelity Estimation of Quantum States Using Machine Learning
    Zhang, Xiaoqian
    Luo, Maolin
    Wen, Zhaodi
    Feng, Qin
    Pang, Shengshi
    Luo, Weiqi
    Zhou, Xiaoqi
    PHYSICAL REVIEW LETTERS, 2021, 127 (13)
  • [26] Entanglement estimation of Werner states with a quantum extreme learning machine
    Assil, Hajar
    El Allati, Abderrahim
    Giorgi, Gian Luca
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [27] Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry
    Xia, Deming
    Chen, Jingwen
    Fu, Zhiqiang
    Xu, Tong
    Wang, Zhongyu
    Liu, Wenjia
    Xie, Hong-bin
    Peijnenburg, Willie J. G. M.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (04) : 2115 - 2123
  • [28] PARAMETER ESTIMATION OF GAUSSIAN MIXTURE MODEL BASED ON VARIATIONAL BAYESIAN LEARNING
    Zhao, Linchang
    Shang, Zhaowei
    Qin, Anyong
    Tang, Yuan Yan
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2018, : 99 - 104
  • [29] Multiparameter quantum estimation theory in quantum Gaussian states
    Bakmou, Lahcen
    Daoud, Mohammed
    Laamara, Rachid ahl
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [30] Parameter estimation with mixed quantum states
    D. Braun
    The European Physical Journal D, 2010, 59 : 521 - 523