Machine-Learning-Based Parameter Estimation of Gaussian Quantum States

被引:8
|
作者
Kundu N.K. [1 ,2 ]
McKay M.R. [1 ,2 ,3 ]
Mallik R.K. [4 ]
机构
[1] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay
[2] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay
[3] Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, 3010, VIC
[4] Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi
关键词
Bayes methods; Estimation; Machine learning; Metrology; Parameter estimation; Phase estimation; Quantum state;
D O I
10.1109/TQE.2021.3137559
中图分类号
学科分类号
摘要
In this article, we propose a machine-learning framework for parameter estimation of single-mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement and squeezing parameter estimation, this is achieved by introducing expectation–maximization (EM)-based algorithms, while for phase parameter estimation, an empirical Bayes method is applied. The estimated prior distribution parameters along with the observed data are used for finding the optimal Bayesian estimate of the unknown displacement, squeezing, and phase parameters. Our simulation results show that the proposed algorithms have estimation performance that is very close to that of “Genie Aided” Bayesian estimators, which assume perfect knowledge of the prior parameters. In practical scenarios, when numerical values of the prior distribution parameters are not known beforehand, our proposed methods can be used to find optimal Bayesian estimates from the observed measurement data. © 2022 IEEE. All right reserved.
引用
收藏
相关论文
共 50 条
  • [1] Machine-Learning-Based Model Parameter Identification for Cutting Force Estimation
    Kouguchi, Junichi
    Tajima, Shingo
    Yoshioka, Hayato
    INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2024, 18 (01) : 26 - 38
  • [2] Machine-Learning-Based Lightpath QoT Estimation and Forecasting
    Allogba, Stephanie
    Aladin, Sandra
    Tremblay, Christine
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) : 3115 - 3127
  • [3] Machine-learning-based EDFA gain estimation [Invited]
    Yu, Jiakai
    Zhu, Shengxiang
    Gutterman, Craig L.
    Zussman, Gil
    Kilper, Daniel C.
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2021, 13 (04) : B83 - B91
  • [4] Machine-learning-based estimation and rendering of scattering in virtual reality
    Pulkki, Ville
    Svensson, U. Peter
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 145 (04): : 2664 - 2676
  • [5] Quantum parameter estimation using multi-mode Gaussian states
    Safranek, Dominik
    Lee, Antony R.
    Fuentes, Ivette
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [6] Estimation of Gaussian quantum states
    Safranek, Dominik
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (03)
  • [7] Machine-Learning-Based Throughput Estimation Using Images for mmWave Communications
    Okamoto, Hironao
    Nishio, Takayuki
    Morikura, Masahiro
    Yamamoto, Koji
    Murayama, Daisuke
    Nakahira, Katsuya
    2017 IEEE 85TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2017,
  • [8] Machine-learning-based state estimation and predictive control of nonlinear processes
    Alhajeri, Mohammed S.
    Wu, Zhe
    Rincon, David
    Albalawi, Fahad
    Christofides, Panagiotis D.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 167 : 268 - 280
  • [9] Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
    Kyle Cranmer
    Gurtej Kanwar
    Sébastien Racanière
    Danilo J. Rezende
    Phiala E. Shanahan
    Nature Reviews Physics, 2023, 5 : 526 - 535
  • [10] Decentralizing machine-learning-based QoT estimation for sliceable optical networks
    Panayiotou, Tania
    Savva, Giannis
    Tomkos, Ioannis
    Ellinas, Georgios
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2020, 12 (07) : 146 - 162