Machine learning-assisted development of organic photovoltaics via high-throughput in situ formulation

被引:0
|
作者
An, Na Gyeong [1 ,2 ]
Kim, Jin Young [2 ]
Vak, Doojin [1 ]
机构
[1] Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton,Victoria,3168, Australia
[2] School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan,44919, Korea, Republic of
来源
Energy and Environmental Science | 2021年 / 14卷 / 06期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Efficiency
引用
收藏
页码:3438 / 3446
相关论文
共 50 条
  • [21] Accelerating Formulation Design via Machine Learning: Generating a High-throughput Shampoo Formulations Dataset
    Chitre, Aniket
    Querimit, Robert C. M.
    Rihm, Simon D.
    Karan, Dogancan
    Zhu, Benchuan
    Wang, Ke
    Wang, Long
    Hippalgaonkar, Kedar
    Lapkin, Alexei A.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [22] Machine learning-assisted morphological profiling for high throughput screening in neuromuscular diseases
    Lorintiu, O.
    Young, J.
    Chapuis, V.
    Compere, L.
    Duchemin-Pelletier, E.
    Anselmo, S.
    Ventre, E.
    NEUROMUSCULAR DISORDERS, 2020, 30 : S67 - S67
  • [23] Accelerating the Discovery of Cu-Sn-S Thermoelectric Compounds via High-Throughput Synthesis, Characterization, and Machine Learning-Assisted Image Analysis
    Sheng, Ye
    Deng, Tingting
    Qiu, Pengfei
    Shi, Xun
    Xi, Jinyang
    Han, Yuexing
    Yang, Jiong
    CHEMISTRY OF MATERIALS, 2021, 33 (17) : 6918 - 6924
  • [24] Stabilizer Formulation Based on High-Throughput Chemiluminescence Imaging and Machine Learning
    Taniike, Toshiaki
    Kitamura, Taishi
    Nakayama, Koyuru
    Takimoto, Ken
    Aratani, Naoki
    Wada, Toru
    Thakur, Ashutosh
    Chammingkwan, Patchanee
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (08) : 3319 - 3326
  • [25] High-Throughput Experimentation and Machine Learning-Assisted Optimization of Iridium-Catalyzed Cross-Dimerization of Sulfoxonium Ylides
    Xu, Yougen
    Gao, Yadong
    Su, Lebin
    Wu, Haiting
    Tian, Hao
    Zeng, Majian
    Xu, Chunqiu
    Zhu, Xinwei
    Liao, Kuangbiao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (48)
  • [26] Investigation of nanomachining-induced plastic behavior using machine learning-assisted high-throughput molecular dynamics simulations
    Xie, Baobin
    Fang, Qihong
    Li, Jia
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (11-12): : 8057 - 8068
  • [27] Investigation of nanomachining-induced plastic behavior using machine learning-assisted high-throughput molecular dynamics simulations
    Baobin Xie
    Qihong Fang
    Jia Li
    The International Journal of Advanced Manufacturing Technology, 2022, 119 : 8057 - 8068
  • [28] Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks
    Shi, Zenan
    Yang, Wenyuan
    Deng, Xiaomei
    Cai, Chengzhi
    Yan, Yaling
    Liang, Hong
    Liu, Zili
    Qiao, Zhiwei
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2020, 5 (04) : 725 - 742
  • [29] High-Throughput Synthesis and Machine Learning Assisted Design of Photodegradable Hydrogels
    Seifermann, Maximilian
    Reiser, Patrick
    Friederich, Pascal
    Levkin, Pavel A. A.
    SMALL METHODS, 2023, 7 (09)
  • [30] High-Throughput Screening of Metal-Organic Frameworks Assisted by Machine Learning: Propane/Propylene Separation
    Xue, Xiaoyu
    Cheng, Min
    Wang, Shihui
    Chen, Shaochen
    Zhou, Li
    Liu, Chong
    Ji, Xu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (02) : 1073 - 1084