FOURIER–MUKAI TRANSFORM FOR FINE COMPACTIFIED PRYM VARIETIES

被引:0
|
作者
Franco, Emilio [1 ]
Hanson, Robert [2 ]
Ruano, João [2 ]
机构
[1] Universidad Autónoma de Madrid, Instituto de Ciencias Matemáticas, CSIC–UAM–UCM–UC3M, Campus de Cantoblanco, Madrid,28049, Spain
[2] Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais s/n, Lisboa,1049-001, Portugal
来源
arXiv | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Equivalence classes
引用
收藏
相关论文
共 50 条
  • [41] Fourier-Mukai transform of vector bundles on surfaces to Hilbert scheme
    Biswas, Indranil
    Nagaraj, D. S.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (01) : 43 - 50
  • [42] PROJECTIONS OF MUKAI VARIETIES
    Kapustka, Michal
    MATHEMATICA SCANDINAVICA, 2018, 123 (02) : 191 - 219
  • [43] GV-SHEAVES, FOURIER-MUKAI TRANSFORM, AND GENERIC VANISHING
    Pareschi, Giuseppe
    Popa, Mihnea
    AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (01) : 235 - 271
  • [44] Prym varieties and their moduli
    Farkas, Gavril
    CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, : 215 - 255
  • [45] Degenerations of Prym varieties
    Alexeev, V
    Birkenhake, C
    Hidek, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 553 : 73 - 116
  • [46] A∞-structures, Brill-Noether loci and the Fourier-Mukai transform
    Polishchuk, A
    COMPOSITIO MATHEMATICA, 2004, 140 (02) : 459 - 481
  • [47] Fourier-Mukai transform on Weierstrass cubics and commuting differential operators
    Burban, Igor
    Zheglov, Alexander
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (10)
  • [48] A characterization of Prym varieties
    Krichever, I.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [49] On the automorphisms of Mukai varieties
    Thomas Dedieu
    Laurent Manivel
    Mathematische Zeitschrift, 2022, 300 : 3577 - 3621
  • [50] On the automorphisms of Mukai varieties
    Dedieu, Thomas
    Manivel, Laurent
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (04) : 3577 - 3621