Verification of an Optimized Shape of Blended-Wing-Body Configuration using Artificial Neural Network

被引:0
|
作者
Nishanth P. [1 ]
Mukesh R. [1 ]
Maharana S.K. [2 ]
机构
[1] Dept. of Aero. Engg., ACS College of Engg., Karnataka, Bangalore
[2] Dept. of Aero. Engg., Acharya Institute of Tech., Karnataka, Bangalore
关键词
Artificial neural network; Blended wing body; Experiments; Genetic algorithm; Optimization;
D O I
10.4273/ijvss.13.5.20
中图分类号
学科分类号
摘要
In the current year’s alternative aircraft shapes, such as Blended-Wing-Body (BWB) aircraft, are considered and explored to create more effective aircraft shapes, specifically for more proficient and very huge transportation and eco-friendlier. In addition to the elimination of the tail for this specific type of aircraft and a significant reduction in equivalent weight, drag force, and radar cross-section, the available space for mounting equipment within has been improved and the operational reach has additionally been increased. Irrespective of all these stated advantages, instability is the undesirable outcome of eliminating the tail. Reviewing this deficiency involves designing a tandem of control surfaces and reflexed wing sections and utilizing a complex PC control system. Hence, several researchers have attempted to address the challenges raised by the aerodynamic shape optimization of BWBs, as well as the need to satisfy design specifications. In this paper, an experimental method was initially accepted to optimize the shape of a baseline design of a BWB. The shape was further allowed to be optimized using a Genetic Algorithm (GA). To strengthen the outcome of the optimized shape Artificial Neural Network (ANN) was used for different angles of attack ranging from-5o to 20o and airspeed ranging from 50 m/s to 700 m/s. A feed-forward back prop network with two layers of perceptron was deployed to achieve the goal of aerodynamic efficiency already set by both the experiment and CFD simulation. The goals of ANN and GA matched with a minor variation of 2% in their output results. © 2021. MechAero Foundation for Technical Research & Education Excellence.
引用
收藏
页码:651 / 656
页数:5
相关论文
共 50 条
  • [21] Adjoint-based optimization for Blended-Wing-Body Underwater Gliders' Shape Design
    Wu, Xumao
    Wang, Peng
    Li, Jian
    Sun, Siqing
    Ding, Yongle
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,
  • [22] Full-Parameters shape optimization design for blended-wing-body underwater gliders
    Yu, Xinkai
    Wang, Peng
    Dong, Huachao
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 274 - 280
  • [23] Surrogate-based bilevel shape optimization for blended-wing-body underwater gliders
    Chen, Weixi
    Wang, Peng
    Dong, Huachao
    ENGINEERING OPTIMIZATION, 2023, 55 (06) : 998 - 1019
  • [24] Performance study of a simplified shape optimization strategy for blended-wing-body underwater gliders
    Li, Chengshan
    Wang, Peng
    Li, Tianbo
    Dong, Huachao
    INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, 2020, 12 (12) : 455 - 467
  • [25] Design and Optimization of a Blended-Wing-Body Underwater Glider
    Ye, Pengcheng
    Pan, Guang
    4TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AERONAUTICAL ENGINEERING (ICMAE 2018), 2019, 491
  • [26] Numerical simulation of dynamic characteristics of a water surface vehicle with a blended-wing-body shape
    Wu, Xiao-cui
    Wang, Yi-wei
    Huang, Chen-guang
    Hu, Zhi-qiang
    Yi, Rui-wen
    JOURNAL OF HYDRODYNAMICS, 2018, 30 (03) : 433 - 440
  • [27] Stall characteristics research of blended-wing-body aircraft
    Fu J.
    Shi Z.
    Zhou M.
    Wu D.
    Pan L.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2020, 41 (01):
  • [28] Conceptual design and analysis of blended-wing-body aircraft
    van Dommelen, Jorrit
    Vos, Roelof
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2014, 228 (13) : 2452 - 2474
  • [29] Shape Optimization of Blended-Wing-Body Underwater Gliders Based on Free-Form Deformation
    Li J.
    Wang P.
    Chen X.
    Dong H.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2020, 38 (03): : 459 - 464
  • [30] Causal-relationship-assisted shape design optimization for blended-wing-body underwater gliders
    Chen, Weixi
    Dong, Huachao
    Wang, Peng
    Wang, Xinjing
    ENGINEERING OPTIMIZATION, 2024, 56 (06) : 963 - 995