Temperature influence on non-linear harmonic vibrations of plates made of viscoelastic materials

被引:0
|
作者
Litewka P. [1 ]
Lewandowski R. [1 ]
机构
[1] Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5, Poznań
来源
Engineering Transactions | 2020年 / 68卷 / 02期
关键词
Fractional Zener material; Harmonic vibrations; Time-temperature superposition; Von Kármán plates;
D O I
10.24423/EngTrans.1114.20200326
中图分类号
学科分类号
摘要
This paper is devoted to the analysis of ambient temperature influence on harmonic vibrations of von Kármán geometrically non-linear plates. The time-temperature superposition and the Williams-Landel-Ferry formula for the horizontal shift are used to modify the viscosity properties in the fractional Zener material model of viscoelasticity. The non-linear amplitude equation is obtained from the time-averaged principle of virtual work and the harmonic balance method. It is then solved after the finite element (FE) discretization using the continuation method to get the response curves in the frequency domain. Several numerical examples are solved and a significant influence of temperature on the resonance properties of the analysed plates is observed. © 2020, Polish Academy of Sciences. All rights reserved.
引用
收藏
页码:159 / 176
页数:17
相关论文
共 50 条
  • [31] DECOUPLING OF NON-LINEAR VIBRATIONS
    SCHRAPEL, HD
    INGENIEUR ARCHIV, 1979, 48 (05): : 289 - 300
  • [32] ON THE NON-LINEAR VIBRATIONS OF A PROJECTILE
    RATH, PC
    SHARMA, SM
    AERONAUTICAL QUARTERLY, 1981, 32 (AUG): : 228 - 242
  • [33] A PROBLEM OF NON-LINEAR VIBRATIONS
    BARBALAT, I
    HALANAY, A
    COLLOQUIUM MATHEMATICUM, 1967, 18 : 107 - &
  • [34] On the equations of non-linear vibrations
    Ma, F
    Lee, WC
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (06) : 907 - 913
  • [35] Modeling the non-linear viscoelastic response of high temperature polyimides
    Karra, Satish
    Rajagopal, K. R.
    MECHANICS OF MATERIALS, 2011, 43 (01) : 54 - 61
  • [36] NON-LINEAR FREE-VIBRATIONS OF BUCKLED PLATES WITH DEFORMABLE LOADED EDGES
    PASIC, H
    HERRMANN, G
    JOURNAL OF SOUND AND VIBRATION, 1983, 87 (01) : 105 - 114
  • [37] NOTE ON THE NON-LINEAR VIBRATIONS OF RECTANGULAR-PLATES WITH PARABOLICALLY VARYING THICKNESS
    BANERJEE, MM
    DAS, JN
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE SECTION B-PHYSICAL & CHEMICAL SCIENCES, 1979, 61 (02): : 51 - 56
  • [38] Non-linear free periodic vibrations of variable stiffness composite laminated plates
    Pedro Ribeiro
    Nonlinear Dynamics, 2012, 70 : 1535 - 1548
  • [39] Numerical comparison of reduced order models for non-linear vibrations of damped plates
    Boumediene, F.
    Duigou, L.
    Miloudi, A.
    Cadou, J. M.
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2012, 21 (3-6): : 174 - 183
  • [40] Non-linear free periodic vibrations of variable stiffness composite laminated plates
    Ribeiro, Pedro
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1535 - 1548