Pure-jump semimartingales

被引:0
|
作者
Černý, Aleš [1 ]
Ruf, Johannes [2 ]
机构
[1] Business School (formerly Cass), City, University of London
[2] Department of Mathematics, London School of Economics and Political Science
来源
arXiv | 2019年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Calculations - Continuous time systems - Markov processes - Stochastic systems
引用
收藏
相关论文
共 50 条
  • [31] LIMIT THEOREMS FOR POWER VARIATIONS OF PURE-JUMP PROCESSES WITH APPLICATION TO ACTIVITY ESTIMATION
    Todorov, Viktor
    Tauchen, George
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (02): : 546 - 588
  • [32] Martingale Nature and Laws of the Iterated Logarithm for Markov Processes of Pure-Jump Type
    Yuichi Shiozawa
    Jian Wang
    Journal of Theoretical Probability, 2021, 34 : 2005 - 2032
  • [33] Jump tests for semimartingales
    Hong, L.
    Zou, J.
    SOUTH AFRICAN ACTUARIAL JOURNAL, 2015, 15 : 93 - 108
  • [34] Lower Bound for the Coarse Ricci Curvature of Continuous-Time Pure-Jump Processes
    Denis Villemonais
    Journal of Theoretical Probability, 2020, 33 : 954 - 991
  • [35] Asymptotic option pricing under pure-jump Levy processes via nonlinear regression
    Song, Seongjoo
    Jeong, Jaehong
    Song, Jongwoo
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (02) : 227 - 238
  • [36] Lower Bound for the Coarse Ricci Curvature of Continuous-Time Pure-Jump Processes
    Villemonais, Denis
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (02) : 954 - 991
  • [37] On the jump activity index for semimartingales
    Jing, Bing-Yi
    Kong, Xin-Bing
    Liu, Zhi
    Mykland, Per
    JOURNAL OF ECONOMETRICS, 2012, 166 (02) : 213 - 223
  • [38] Plug-in Estimator of the Entropy Rate of a Pure-Jump Two-State Markov Process
    Regnault, Philippe
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2009, 1193 : 153 - 160
  • [39] Asymptotic option pricing under pure-jump Lévy processes via nonlinear regression
    Seongjoo Song
    Jaehong Jeong
    Jongwoo Song
    Journal of the Korean Statistical Society, 2011, 40 : 227 - 238
  • [40] Existence of density function for the running maximum of SDEs driven by nontruncated pure-jump Lévy processes
    Nakagawa, Takuya
    Suzuki, Ryoichi
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (03): : 303 - 321