Effect of heat treatments on inhomogeneous deformation of the melt-pool structure of Al-Si alloy manufactured via laser powder bed fusion

被引:1
|
作者
Otani, Yuki [1 ]
Takata, Naoki [1 ]
Suzuki, Asuka [1 ]
Kobashi, Makoto [1 ]
Kato, Masaki [2 ]
机构
[1] Nagoya Univ, Grad Sch Engn, Dept Mat Proc Engn, Furo Cho,Chikusa Ku, Nagoya 4648603, Japan
[2] Aichi Ctr Ind & Sci Technol, 1267 1 Akiai,Yakusa cho, Toyota 4700356, Japan
基金
日本学术振兴会;
关键词
Additive manufacturing; Aluminum alloys; Inhomogeneous deformation; Tensile ductility; Digital-image correlation; ELASTIC-MODULUS; SOLIDIFICATION; MICROSTRUCTURE; INDENTATION; HARDNESS; RATES;
D O I
10.1016/j.msea.2024.146808
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Laser powder bed fusion (L-PBF) is an additive manufacturing technology widely applied to the manufacture of metallic parts. The L-PBF processed aluminum-silicon (Al-Si) cast-type alloy components exhibit an anisotropic tensile ductility. In this study, we investigated the influence of heat treatments on the microstructural features of an Al-12%Si binary alloy fabricated via L-PBF and the associated inhomogeneous deformation of its melt-pool structure, which contributes to the resulting anisotropic tensile ductility. The mechanical inhomogeneity of the melt-pool structure and the change induced by annealing at various temperatures (300 and 530 degrees C) were characterized using microscale digital-image correlation analyses of scanning electron microscopy images obtained in situ during tensile deformation and nanoindentation hardness mapping. In the specimen fabricated via L-PBF, the high strain was concentrated at the locally coarsened microstructure (the soft region) along the boundaries of the melt pools rather than at the refined solidification microstructure (the hard region) within the melt pools. The localized strain varied depending on the geometrical relation between the orientation of the melt-pool boundary and the tensile direction, thus contributing to the anisotropic tensile ductility. This tendency appeared less pronounced in the specimen annealed at 300 degrees C, which exhibited a slightly homogenized melt-pool structure. The reduced strain localization is associated with a reduced difference in local strength between the melt-pool boundary (soft region) and the melt-pool interior (hard region). The slight homogenization of the melt- pool structure emphasized the effect of grain morphologies in the alpha-Al matrix on the inhomogeneous deformation within melt pools. In the specimen annealed at 530 degrees C, which exhibited a homogenized alpha-Al/Si two-phase microstructure, the uniformly distributed Si phase would be responsible for the homogenous deformation, resulting in an isotropic tensile ductility. This study advances our understanding of the correlation between the melt-pool structure and the deformation behavior of Al-Si alloys processed using L-PBF, which provides new insights for controlling the ductility by post-processing.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion
    Yong Ren
    Qian Wang
    Journal of Intelligent Manufacturing, 2022, 33 : 2239 - 2256
  • [22] Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion
    Ren, Yong
    Wang, Qian
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (08) : 2239 - 2256
  • [23] Softening kinetics and mechanism during the annealing of an Al-Si alloy produced by laser powder bed fusion
    Munoz, Jairo Alberto
    Barriobero-Vila, Pere
    Stark, Andreas
    Schell, Norbert
    Zhu, Yuntian
    Cabrera, Jose Maria
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [24] Corrosion behavior assessment of an Al-Cu alloy manufactured via laser powder bed fusion
    Lorenzi, Sergio
    Carrozza, Alessandro
    Cabrini, Marina
    Nani, Lorenzo
    Andreatta, Francesco
    Virtanen, Eero
    Tirelli, Tommaso
    Pastore, Tommaso
    CORROSION SCIENCE, 2024, 227
  • [25] Shape memory effect enhancement via aging treatment of the Cu-Al-Mn-Si alloy manufactured using laser powder bed fusion
    Xiang, Honghao
    Dang, Mingzhu
    Zheng, Jianan
    Li, Jikang
    Gao, Hairui
    Cai, Chao
    Wei, Qingsong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [26] Shape memory effect enhancement via aging treatment of the Cu-Al-Mn-Si alloy manufactured using laser powder bed fusion
    Xiang, Honghao
    Dang, Mingzhu
    Zheng, Jianan
    Li, Jikang
    Gao, Hairui
    Cai, Chao
    Wei, Qingsong
    Journal of Alloys and Compounds, 1600, 1005
  • [27] Microstructure and mechanical properties of a hypereutectic Al-Si-Cu alloy manufactured by laser powder bed fusion
    Bobel, Andrew
    Kim, Yoojin
    Casalena, Lee
    Maddalena, Roger
    Sachdev, Anil K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 901
  • [28] Vision-based in-situ monitoring system for melt-pool detection in laser powder bed fusion process
    Le, Trong-Nhan
    Lee, Min-Hsun
    Lin, Ze-Hong
    Tran, Hong-Chuong
    Lo, Yu-Lung
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 68 : 1735 - 1745
  • [29] Effect of heat treatments on microstructure, mechanical and electrical properties of Cu-Cr-Zr alloy manufactured by laser powder bed fusion
    Zhou, Jiqiang
    Huang, Yushan
    Li, Zheng
    Tong, Xin
    You, Deqiang
    Yang, Junjie
    Zhang, Qingmao
    Li, Wei
    Wang, Xiaojian
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 296
  • [30] Heat treatment effect on microstructure evolution of two Si steels manufactured by laser powder bed fusion
    Di Schino, Andrea
    Montanari, Roberto
    Sgambetterra, Mirko
    Stornelli, Giulia
    Varone, Alessandra
    Zucca, Guido
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 26 : 8406 - 8424