Experimental study and extreme gradient boosting (XGBoost) based prediction of caking ability of coal blends

被引:1
|
作者
Rzychoń, Maciej [1 ]
Żogala, Alina [1 ]
Róg, Leokadia [2 ]
机构
[1] Department of Acoustics, Electronics and IT Solutions, Central Mining Institute, Plac Gwarków 1, Katowice,40-166, Poland
[2] Department of Solid Fuel Quality Assessment, Central Mining Institute, Plac Gwarków 1, Katowice,40-166, Poland
来源
Journal of Analytical and Applied Pyrolysis | 2021年 / 156卷
关键词
Additives - Learning systems - Coking properties - Forecasting - Coal industry - Physicochemical properties - Coking;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Investigation on eXtreme Gradient Boosting for cutting force prediction in milling
    Heitz, Thomas
    He, Ning
    Ait-Mlouk, Addi
    Bachrathy, Daniel
    Chen, Ni
    Zhao, Guolong
    Li, Liang
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025, 36 (01) : 285 - 301
  • [32] Metaheuristic Optimized Extreme Gradient Boosting Milling Maintenance Prediction
    Bozovic, Aleksandra
    Jovanovic, Luka
    Desnica, Eleonora
    Bacanin, Nebojsa
    Zivkovic, Miodrag
    Antonijevic, Milos
    Mani, Joseph P.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 361 - 374
  • [33] Business Failure Prediction Based on a Cost-Sensitive Extreme Gradient Boosting Machine
    Zou, Yao
    Gao, Changchun
    Gao, Han
    IEEE ACCESS, 2022, 10 : 42623 - 42639
  • [34] Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm
    Wang H.-F.
    Zhang C.-Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2020, 54 (03): : 606 - 613
  • [35] Multiclassification Prediction of Clay Sensitivity Using Extreme Gradient Boosting Based on Imbalanced Dataset
    Ma, Tao
    Wu, Lizhou
    Zhu, Shuairun
    Zhu, Hongzhou
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [36] Clinical Prediction of Heart Failure in Hemodialysis Patients: Based on the Extreme Gradient Boosting Method
    Wang, Yanfeng
    Miao, Xisha
    Xiao, Gang
    Huang, Chun
    Sun, Junwei
    Wang, Ying
    Li, Panlong
    You, Xu
    FRONTIERS IN GENETICS, 2022, 13
  • [37] Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines
    Trizoglou, Pavlos
    Liu, Xiaolei
    Lin, Zi
    RENEWABLE ENERGY, 2021, 179 : 945 - 962
  • [38] Study on risk factors of impaired fasting glucose and development of a prediction model based on Extreme Gradient Boosting algorithm
    Cui, Qiyuan
    Pu, Jianhong
    Li, Wei
    Zheng, Yun
    Lin, Jiaxi
    Liu, Lu
    Xue, Peng
    Zhu, Jinzhou
    He, Mingqing
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15
  • [39] On using eXtreme Gradient Boosting (XGBoost) Machine Learning algorithm for Home Network Traffic Classification
    Cherif, Iyad Lahsen
    Kortebi, Abdesselem
    2019 WIRELESS DAYS (WD), 2019,
  • [40] Prediction of higher heating value of coal based on gradient boosting regression tree model
    Xu, Na
    Wang, Zhiwei
    Dai, Yuchen
    Li, Qiang
    Zhu, Wei
    Wang, Ru
    Finkelman, Robert B.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2023, 274