Molecular Dynamics Simulations of Deposition and Damage on Tungsten Plasma-Facing Materials by Tungsten Dust

被引:0
|
作者
牛国鉴 [1 ,2 ]
李小椿 [1 ]
丁锐 [1 ]
徐倩 [1 ]
罗广南 [1 ]
机构
[1] Institute of Plasma Physics, Chinese Academy of Sciences
[2] University of Science and Technology of
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Classical molecular dynamics has been used to study the interactions between tungsten(W) plasma-facing materials(PFMs) and dust grains. The impact velocity of dust grains is in the range from 324 m/s to 3240 m/s. The main effect of dust grains with low impact velocity is deposition. However, a material surface can be damaged by high velocity dust grains. The cumulative damage of impacting dust grains has also been take into account. When the impact velocity is low, no significant damage is detected but a porous firm forms on the surface. Serious damage can be produced on PFMs if the impact velocity is high.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] The thermal stability of dispersion-strengthened tungsten as plasma-facing materials: a short review
    Zhang, Tao
    Xie, Zhuoming
    Yang, Junfeng
    Hao, Ting
    Liu, Changsong
    [J]. TUNGSTEN, 2019, 1 (03) : 187 - 197
  • [32] A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials
    Nguyen, Ba Nghiep
    Henager, Charles H., Jr.
    Overman, Nicole R.
    Kurtz, Richard J.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2018, 508 : 371 - 384
  • [33] A numerical study on the effect of dust particles on tritium deposition on plasma-facing materials
    Niu, Guo-Jian
    Kawamura, Gakushi
    Xu, Qian
    He, Tao
    Nian, Fei-Fei
    Wang, Rong
    Yang, Zhong-Shi
    Luo, Guang-Nan
    [J]. NUCLEAR MATERIALS AND ENERGY, 2022, 31
  • [34] A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials
    Kolasinski, R. D.
    Cowgill, D. F.
    Causey, R. A.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S676 - S679
  • [35] The thermal stability of dispersion-strengthened tungsten as plasma-facing materials: a short review
    Tao Zhang
    Zhuoming Xie
    Junfeng Yang
    Ting Hao
    Changsong Liu
    [J]. Tungsten, 2019, 1 : 187 - 197
  • [36] Micro-structured tungsten: an advanced plasma-facing material
    Terra, A.
    Sergienko, G.
    Tokar, M.
    Borodin, D.
    Dittmar, T.
    Huber, A.
    Kreter, A.
    Martynova, Y.
    Moeller, S.
    Rasinski, M.
    Wirtz, M.
    Loewenhoff, Th
    Dorow-Gerspach, D.
    Yuan, Y.
    Brezinsek, S.
    Unterberg, B.
    Linsmeier, Ch
    [J]. NUCLEAR MATERIALS AND ENERGY, 2019, 19 : 7 - 12
  • [37] Recent progress of thick tungsten coating prepared by chemical vapor deposition as the plasma-facing material
    Chen, Z.
    Li, Y.
    Cheng, L.
    Wang, Z.
    Lian, Y.
    Liu, X.
    Feng, F.
    Wang, J.
    Tan, Y.
    Morgan, T. W.
    Lu, G. H.
    Ye, X.
    Yan, B.
    Song, J.
    Xu, M.
    Duan, X. R.
    [J]. NUCLEAR FUSION, 2021, 61 (12)
  • [38] Molecular dynamics simulations of tungsten bombardments on tungsten nanoparticles
    Li, Min
    Hou, Qing
    Cui, Jiechao
    Fu, Baoqin
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2019, 450 : 47 - 50
  • [39] Electronically Temperature-Dependent Interplay between He and Trivacancy in Tungsten Plasma-Facing Materials
    Fu, Zhao-Zhong
    Pan, Bi-Cai
    [J]. MATERIALS, 2024, 17 (10)
  • [40] RECENT ADVANCES ON HYDROGEN RETENTION IN ITER'S PLASMA-FACING MATERIALS: BERYLLIUM, CARBON, AND TUNGSTEN
    Skinner, C. H.
    Haasz, A. A.
    Alimow, V. Kh.
    Bekris, N.
    Causey, R. A.
    Clark, R. E. H.
    Coad, J. P.
    Davis, J. W.
    Doerner, R. P.
    Mayer, M.
    Pisarev, A.
    Roth, J.
    Tanabe, T.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2008, 54 (04) : 891 - 945