Microfluidic Avenue to Manipulate Polycrystalline Materials: A Case Study of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane

被引:0
|
作者
Shi, Jinyu [1 ,2 ]
Fei, Yipeng [1 ,3 ]
Xia, Haoxuan [1 ,3 ]
Zhou, Xingyi [1 ,3 ]
Yu, Qiong [1 ,3 ]
Zhu, Peng [1 ,3 ]
Shen, Ruiqi [1 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Nanjing 210094, Peoples R China
[2] China Acad Engn Phys CAEP, Inst Chem Mat, Mianyang 621900, Peoples R China
[3] Nanjing Univ Sci & Technol, Micronano Energet Devices Key Lab, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
CL-20; NUCLEATION; EPSILON; CRYSTALLIZATION; TRANSFORMATION; PRECIPITATION; POLYMORPHS; MORPHOLOGY; STABILITY; GROWTH;
D O I
10.1021/acs.cgd.4c00278
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymorphic transformation is of paramount importance as it significantly influences the physical, chemical, and functional properties of materials, with profound implications in fields ranging from advanced materials engineering to high-energy material science. However, there is difficulty in understanding transformation mechanisms, achieving precise control over transformation processes, and addressing the stability of polymorphs. This work sets its sights on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), a typical polycrystalline explosive, and innovatively embarks on the development of a control strategy for polymorphic transformation from both mechanistic and experimental perspectives by microfluidics. We delve into the microscopic transformation mechanisms from the alpha-form to the beta-form and eventually to the epsilon-form, utilizing molecular dynamics simulations incorporating thermodynamic and kinetic principles. To control these transitions, a custom-engineered coaxial micromixer was developed, leading to the establishment of an advanced microfluidic system for polymorph control. The groundbreaking mechanism was validated by scrutinizing the influence of microfluidic conditions on the polymorphic transformation, facilitating a continuous and efficient transition from alpha-CL-20 to epsilon-CL-20-PBX. Notably, thermal decomposition tests provided further endorsement, confirming the superior storage safety and reliability of epsilon-CL-20-PBX. The findings offer an unprecedented understanding of the polymorphic transformation of explosive materials and open new avenues in the manipulation of polycrystalline materials.
引用
收藏
页码:7755 / 7773
页数:19
相关论文
共 50 条
  • [21] Voids and density distributions in 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) prepared under various conditions
    Hoffman, DM
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2003, 28 (04) : 194 - 200
  • [22] Optimization of the Synthesis of 2,4,6,8,10,12-Hexaallyl-2,4,6,8,10,12-Hexaazaisowurtzitane
    Adamiak, Joanna
    Maksimowski, Pawel
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2009, 34 (04) : 315 - 320
  • [23] Comparative Study of Experiments and Calculations on the Polymorphisms of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) Precipitated by Solvent/Antisolvent Method
    Wei, Xianfeng
    Xu, Jinjiang
    Li, Hongzhen
    Long, Xinping
    Zhang, Chaoyang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (09): : 5042 - 5051
  • [24] Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp strain FA1
    Bhushan, B
    Paquet, L
    Spain, JC
    Hawari, J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (09) : 5216 - 5221
  • [25] One-Pot Synthesis of Hexaacetylhexaazaisowurtzitane (HAIW) a Precursor of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW-CL-20)
    Sivakumar, Dhanavel
    Vembu, Sandhirakasu
    Chandrakumari, Sambandam
    Manikandan, Haridoss
    Venkatesan, Vaidyanathan
    Gopalakrishnan, Mannathusamy
    CHEMISTRYSELECT, 2017, 2 (10): : 3014 - 3017
  • [26] Synthesis of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane Using Melaminium-tris-(hydrogensulfate) by a Simple One-Pot Nitration Procedure
    Bayat, Yadollah
    Zolfigol, Mohammad A.
    Khazaei, Ardeshir
    Mokhlesi, Mohamad
    Daraei, Masoume
    Tehrani, Amin Heydari Nezhad
    Chehardoli, Golamabbas
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2013, 38 (06) : 745 - 747
  • [27] Adsorption of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) on a soil organic matter. A DFT M05 computational study
    Sviatenko, Liudmyla K.
    Gorb, Leonid
    Shukla, Manoj K.
    Seiter, Jennifer M.
    Leszczynska, Danuta
    Leszczynski, Jerzy
    CHEMOSPHERE, 2016, 148 : 294 - 299
  • [28] Solvate of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) with both N2O4 and Stable NO2 Free Radical
    Yudin, Nikolay V.
    Sinditskii, Valery P.
    Filatov, Sergei A.
    Serushkin, Valery V.
    Kostin, Nikita A.
    Ivanyan, Marine V.
    Zhang, Jiang-Guo
    CHEMPLUSCHEM, 2020, 85 (09): : 1994 - 2000
  • [29] Role of the Bromide on the Hydrodebenzylation of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HBIW)
    Liu, Wei
    She, Chong Chong
    Chao, Hui
    Wang, Na
    Chen, Shu Sen
    Jin, Shao Hua
    Wang, Jun Feng
    Chen, Kun
    CHEMISTRYSELECT, 2022, 7 (13):
  • [30] The Crystal Structure and Morphology of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) p-Xylene Solvate: A Joint Experimental and Simulation Study
    Shen, Fanfan
    Lv, Penghao
    Sun, Chenghui
    Zhang, Rubo
    Pang, Siping
    MOLECULES, 2014, 19 (11) : 18574 - 18589