Microfluidic Avenue to Manipulate Polycrystalline Materials: A Case Study of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane

被引:0
|
作者
Shi, Jinyu [1 ,2 ]
Fei, Yipeng [1 ,3 ]
Xia, Haoxuan [1 ,3 ]
Zhou, Xingyi [1 ,3 ]
Yu, Qiong [1 ,3 ]
Zhu, Peng [1 ,3 ]
Shen, Ruiqi [1 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Nanjing 210094, Peoples R China
[2] China Acad Engn Phys CAEP, Inst Chem Mat, Mianyang 621900, Peoples R China
[3] Nanjing Univ Sci & Technol, Micronano Energet Devices Key Lab, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
CL-20; NUCLEATION; EPSILON; CRYSTALLIZATION; TRANSFORMATION; PRECIPITATION; POLYMORPHS; MORPHOLOGY; STABILITY; GROWTH;
D O I
10.1021/acs.cgd.4c00278
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymorphic transformation is of paramount importance as it significantly influences the physical, chemical, and functional properties of materials, with profound implications in fields ranging from advanced materials engineering to high-energy material science. However, there is difficulty in understanding transformation mechanisms, achieving precise control over transformation processes, and addressing the stability of polymorphs. This work sets its sights on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), a typical polycrystalline explosive, and innovatively embarks on the development of a control strategy for polymorphic transformation from both mechanistic and experimental perspectives by microfluidics. We delve into the microscopic transformation mechanisms from the alpha-form to the beta-form and eventually to the epsilon-form, utilizing molecular dynamics simulations incorporating thermodynamic and kinetic principles. To control these transitions, a custom-engineered coaxial micromixer was developed, leading to the establishment of an advanced microfluidic system for polymorph control. The groundbreaking mechanism was validated by scrutinizing the influence of microfluidic conditions on the polymorphic transformation, facilitating a continuous and efficient transition from alpha-CL-20 to epsilon-CL-20-PBX. Notably, thermal decomposition tests provided further endorsement, confirming the superior storage safety and reliability of epsilon-CL-20-PBX. The findings offer an unprecedented understanding of the polymorphic transformation of explosive materials and open new avenues in the manipulation of polycrystalline materials.
引用
收藏
页码:7755 / 7773
页数:19
相关论文
共 50 条
  • [1] 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW)
    Viswanath, J. Venkata
    Venugopal, K. J.
    Rao, N. V. Srinivasa
    Venkataraman, A.
    DEFENCE TECHNOLOGY, 2016, 12 (05): : 401 - 418
  • [2] Hydrogen Peroxide Solvates of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
    Bennion, Jonathan C.
    Chowdhury, Nilanjana
    Kampf, Jeff W.
    Matzger, Adam J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (42) : 13118 - 13121
  • [3] Crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane solvate with ɛ-caprolactam
    S. M. Aldoshin
    Z. G. Aliev
    T. K. Goncharov
    Journal of Structural Chemistry, 2014, 55 : 709 - 712
  • [4] Structure and properties of cocrystals of trinitrotoluene and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
    S. M. Aldoshin
    Z. G. Aliev
    T. K. Goncharov
    A. I. Kazakov
    Yu. M. Milekhin
    N. A. Plishkin
    N. I. Shishov
    Russian Chemical Bulletin, 2013, 62 : 1354 - 1360
  • [5] Structure and properties of cocrystals of trinitrotoluene and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
    Aldoshin, S. M.
    Aliev, Z. G.
    Goncharov, T. K.
    Kazakov, A. I.
    Milekhin, Yu M.
    Plishkin, N. A.
    Shishov, N. I.
    RUSSIAN CHEMICAL BULLETIN, 2013, 62 (06) : 1354 - 1360
  • [6] The energy parameters of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane polymorphs and their phase transitions
    Golovina, N. I.
    Utenyshev, A. N.
    Bozhenko, K. V.
    Chukanov, N. V.
    Zakharov, V. V.
    Korsounskii, B. L.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 83 (07) : 1153 - 1159
  • [7] The energy parameters of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane polymorphs and their phase transitions
    N. I. Golovina
    A. N. Utenyshev
    K. V. Bozhenko
    N. V. Chukanov
    V. V. Zakharov
    B. L. Korsounskii
    Russian Journal of Physical Chemistry A, 2009, 83 : 1153 - 1159
  • [8] Crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane solvate with E⟩-caprolactam
    Aldoshin, S. M.
    Aliev, Z. G.
    Goncharov, T. K.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2014, 55 (04) : 709 - 712
  • [9] An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW)
    JVENKATA VISWANATH
    KJVENUGOPAL
    NVSRINIVASA RAO
    AVENKATARAMAN
    Defence Technology, 2016, 12 (05) : 401 - 418
  • [10] Statistical Optimization of Reaction Parameters for the Synthesis of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
    Bayat, Yadollah
    Hajimirsadeghi, Seiedeh Somayyeh
    Pourmortazavi, Seied Mandi
    ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2011, 15 (04) : 810 - 816