In this study, date palm biochar (DP) was modified through acidification with HCl (DPA), alkali treatment with NaOH (DPB), chitosan (chitosan-DP), metal loading with Fe3O4 3 O 4 (DPI) and acidification and metal loading with HCl + Fe3O4 3 O 4 (DPAI) to enhance ibuprofen (IBP) adsorption from wastewater. Optimization was done using BoxBehnken model-based response surface methodology. DPAI showed the highest IBP adsorption capacity (72.2 mg/g) surpassing DPA (71.5 mg/g), DPB (67.8 mg/g), DPI (67.81 mg/g), DP (65.7 mg/g) and Chitosan-DP (61.32 mg/g) under optimal conditions (pH- 2, concentration- 150 mg/L, time- 20 h). This was due to improved pore structure and increased adsorption sites. However, life cycle assessment revealed that DPAI had the highest environmental impact out of all the modified biochars with a Cumulative Energy Demand (CED) of 143.22 MJ/kg and a Global Warming Potential (GWP) of 10 kg CO2eq. 2 eq. Sensitivity analysis suggested that transitioning to renewable energy sources could reduce GHG by 37.4 % and CED by 22.1 %. Additionally, reducing iron content can mitigate 22.1 % of GHG and 8.1 % of CED for DPAI. Nonetheless, DPAI still demonstrated effective adsorption rates after 2 cycles of regeneration study.