On the Correlation between Group III-A Elements Doping and Structure Performance of Cu/ZnO/ZrO2 Catalysts System for CO2 Hydrogenation to Methanol

被引:1
|
作者
Shrivastaw, Vivek Kumar [1 ,2 ]
Kaishyop, Jyotishman [1 ,2 ]
Khan, Tuhin Suvra [2 ]
Khurana, Deepak [2 ]
Singh, Gaje [1 ,2 ]
Paul, Subham [2 ]
Chowdhury, Biswajit [3 ]
Bordoloi, Ankur [1 ,2 ]
机构
[1] CSIR Indian Inst Petr IIP, Light Stock Proc Div, Nano Catalysis Area, Haridwar Rd, Dehra Dun 248005, Uttarakhand, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, Uttar Pradesh, India
[3] Indian Inst Technol ISM Dhanbad, Dept Chem & Chem Biol, Dhanbad 826004, Jharkhand, India
关键词
CO2; Hydrogenation; Surface basicity; Oxygen vacancy; in-situ DRIFT study; Theoretical studies; CARBON-DIOXIDE HYDROGENATION; HYDROTALCITE-LIKE PRECURSORS; CU-ZNO/ZRO2; CATALYSTS; ACTIVE-SITES; OXIDATION; OXIDE; SUPPORT; TEMPERATURE; STATE; ZNO;
D O I
10.1002/cctc.202400534
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A set of Cu/ZnO/ZrO2 catalysts doped with Group-IIIA elements (M=B, Al, Ga & In) were synthesized via a facile single-step evaporation-induced self-assembly (EISA) method to tune up the catalyst basicity and modulate the structure to improve the methanol yield in CO2 hydrogenation reaction. To understand the catalyst's textural properties and catalytic activity, prepared catalysts were exposed to several in-situ/ex-situ characterization techniques like Physisorption & Chemisorption studies, XRD, XPS, TEM, and in-situ DRIFT. The addition of group IIIA elements has a significant impact on the CO2 conversion and Methanol selectivity via tailoring the important textural properties such as metallic surface area of Cu, reducibility of catalysts, particle size, controlled oxygen vacancy, and basicity of catalyst surface. CZZ doped with Al appeared to be the best catalyst, in this study. The modified Cu-ZnO interface via density functional theory (DFT) calculations also indicated that the CO2 adsorption energy is found to be highest for CZZAl, which is concomitant with CO2-TPD analysis results. The lowest to highest CO2 adsorption energy order over the catalyst set follows CZZIn
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Role of Basic Sites on Cu/ZrO2 Catalysts Modified with Citric Acid in the Hydrogenation of CO2 to Methanol
    Dai, Wenhua
    Meng, Xin
    Jin, Daoming
    Xu, Fan
    Yang, Dandan
    Xin, Zhong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2025, 64 (10) : 5228 - 5242
  • [32] On the Reactivity of the Cu/ZrO2 System for the Hydrogenation of CO2 to Methanol: A Density Functional Theory Study
    Polierer, Sabrina
    Jelic, Jelena
    Pitter, Stephan
    Studt, Felix
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (44): : 26904 - 26911
  • [33] Influence of ZrO2 Structure and Copper Electronic State on Activity of Cu/ZrO2 Catalysts in Methanol Synthesis from CO2
    Samson, K.
    Sliwa, M.
    Socha, R. P.
    Gora-Marek, K.
    Mucha, D.
    Rutkowska-Zbik, D.
    Paul, J-F.
    Ruggiero-Mikolajczyk, M.
    Grabowski, R.
    Sloczynski, J.
    ACS CATALYSIS, 2014, 4 (10): : 3730 - 3741
  • [34] CO2 Hydrogenation on ZrO2/Cu(111) Surfaces: Production of Methane and Methanol
    Rui, Ning
    Shi, Rui
    Gutierrez, Ramon A.
    Rosales, Rina
    Kang, Jindong
    Mahapatra, Mausumi
    Ramirez, Pedro J.
    Senanayake, Sanjaya D.
    Rodriguez, Jose A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (51) : 18900 - 18906
  • [35] Kinetics of methanol decomposition on Cu/ZnO/ZrO2 catalysts
    Grabowski, R
    Kozlowska, A
    POLISH JOURNAL OF CHEMISTRY, 2004, 78 (02) : 287 - 298
  • [36] Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO
    Ren, Hong
    Xu, Cheng-Hua
    Zhao, Hao-Yang
    Wang, Ya-Xue
    Liu, Jie
    Liu, Jian-Ying
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 28 : 261 - 267
  • [37] Enhanced Methanol Synthesis via CO2 Hydrogenation over ZnO/ZrO2 Catalysts by the Regulation of Precipitation Method
    Shen, Yibing
    Yu, Jun
    Ji, Shuangtao
    Hong, Fei
    Guo, Qiangsheng
    Mao, Dongsen
    CATALYSIS LETTERS, 2024, 154 (07) : 3749 - 3758
  • [38] Morphology and activity relationships of macroporous CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation
    Yu-Hao Wang
    Wen-Gui Gao
    Hua Wang
    Yan-E Zheng
    Kong-Zhai Li
    Ru-Gui Ma
    Rare Metals, 2016, 35 : 790 - 796
  • [39] CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure
    Han, Zhe
    Tang, Chizhou
    Sha, Feng
    Tang, Shan
    Wang, Jijie
    Li, Can
    JOURNAL OF CATALYSIS, 2021, 396 : 242 - 250
  • [40] Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: The effect of Zn content
    Wang S.
    Yang J.
    Zhou H.
    Xiao F.
    Zhao N.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2024, 52 (03): : 293 - 304