On the Correlation between Group III-A Elements Doping and Structure Performance of Cu/ZnO/ZrO2 Catalysts System for CO2 Hydrogenation to Methanol

被引:1
|
作者
Shrivastaw, Vivek Kumar [1 ,2 ]
Kaishyop, Jyotishman [1 ,2 ]
Khan, Tuhin Suvra [2 ]
Khurana, Deepak [2 ]
Singh, Gaje [1 ,2 ]
Paul, Subham [2 ]
Chowdhury, Biswajit [3 ]
Bordoloi, Ankur [1 ,2 ]
机构
[1] CSIR Indian Inst Petr IIP, Light Stock Proc Div, Nano Catalysis Area, Haridwar Rd, Dehra Dun 248005, Uttarakhand, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, Uttar Pradesh, India
[3] Indian Inst Technol ISM Dhanbad, Dept Chem & Chem Biol, Dhanbad 826004, Jharkhand, India
关键词
CO2; Hydrogenation; Surface basicity; Oxygen vacancy; in-situ DRIFT study; Theoretical studies; CARBON-DIOXIDE HYDROGENATION; HYDROTALCITE-LIKE PRECURSORS; CU-ZNO/ZRO2; CATALYSTS; ACTIVE-SITES; OXIDATION; OXIDE; SUPPORT; TEMPERATURE; STATE; ZNO;
D O I
10.1002/cctc.202400534
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A set of Cu/ZnO/ZrO2 catalysts doped with Group-IIIA elements (M=B, Al, Ga & In) were synthesized via a facile single-step evaporation-induced self-assembly (EISA) method to tune up the catalyst basicity and modulate the structure to improve the methanol yield in CO2 hydrogenation reaction. To understand the catalyst's textural properties and catalytic activity, prepared catalysts were exposed to several in-situ/ex-situ characterization techniques like Physisorption & Chemisorption studies, XRD, XPS, TEM, and in-situ DRIFT. The addition of group IIIA elements has a significant impact on the CO2 conversion and Methanol selectivity via tailoring the important textural properties such as metallic surface area of Cu, reducibility of catalysts, particle size, controlled oxygen vacancy, and basicity of catalyst surface. CZZ doped with Al appeared to be the best catalyst, in this study. The modified Cu-ZnO interface via density functional theory (DFT) calculations also indicated that the CO2 adsorption energy is found to be highest for CZZAl, which is concomitant with CO2-TPD analysis results. The lowest to highest CO2 adsorption energy order over the catalyst set follows CZZIn
引用
收藏
页数:12
相关论文
共 50 条
  • [1] CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by chemical reduction
    Dong Xiaosu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [2] Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol
    Yuhao Wang
    Shyam Kattel
    Wengui Gao
    Kongzhai Li
    Ping Liu
    Jingguang G. Chen
    Hua Wang
    Nature Communications, 10
  • [3] Experimental and kinetic modeling of CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts
    Dong, Meirong
    Ning, Jingyun
    Liu, Hongchuan
    Xiong, Junchang
    Yang, Junshu
    Huang, Zehua
    Liang, Youcai
    Lu, Jidong
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (15) : 3573 - 3587
  • [4] CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by chemical reduction
    Dong, Xiaosu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [5] Cu2In Nanoalloy Enhanced Performance of Cu/ZrO2 Catalysts for the CO2 Hydrogenation to Methanol
    Gao, Jia
    Song, Fujiao
    Li, Yue
    Cheng, Wenqiang
    Yuan, Haiyan
    Xu, Qi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (27) : 12331 - 12337
  • [6] CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy
    Chen, Hao
    Cui, Haishuai
    Lv, Yang
    Liu, Pingle
    Hao, Fang
    Xiong, Wei
    Luo, He'an
    FUEL, 2022, 314
  • [7] CO2 Hydrogenation to Methanol on ZnO/ZrO2 Catalysts: Effects of Zirconia Phase
    Lin, Lili
    Wang, Guihui
    Zhao, Fuzhen
    CHEMISTRYSELECT, 2021, 6 (09): : 2119 - 2125
  • [8] Design of technical ZnO/ZrO2 catalysts for CO2 hydrogenation to green methanol
    Zou, Tangsheng
    Araujo, Thaylan Pinheiro
    Agrachev, Mikhail
    Jin, Xiaoyu
    Krumeich, Frank
    Jeschke, Gunnar
    Mitchell, Sharon
    Perez-Ramirez, Javier
    JOURNAL OF CATALYSIS, 2024, 430
  • [9] Mg enhanced the performance of Cu/ZnO/ZrO2 for CO2 hydrogenation to methanol and the mechanism investigation
    He, Qin
    Li, Zhongfu
    Li, Dong
    Ning, Fanghao
    Wang, Qunfei
    Liu, Wenqi
    Zhang, Weikun
    Cui, Yilin
    Zhang, Jingyan
    Liu, Conghua
    MOLECULAR CATALYSIS, 2024, 558
  • [10] Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation
    Zhuang H.-D.
    Bai S.-F.
    Liu X.-M.
    Yan Z.-F.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2010, 38 (04): : 462 - 467