Genome-Wide Identification and Functional Analysis of the GUX Gene Family in Eucalyptus grandis

被引:1
|
作者
Li, Linsi [1 ]
Tang, Jiye [1 ]
Wu, Aimin [1 ]
Fan, Chunjie [2 ]
Li, Huiling [1 ]
机构
[1] South China Agr Univ, Coll Forestry & Landscape Architectures, Guangdong Key Lab Innovat Dev & Utilizat Forest Pl, Guangzhou 510642, Peoples R China
[2] Chinese Acad Forestry, Res Inst Trop Forestry, State Key Lab Tree Genet & Breeding, Key Lab State Forestry & Grassland Adm Trop Forest, Guangzhou 510520, Peoples R China
关键词
GUX family genes; Eucalyptus grandis; genome-wide identification; functional analysis; MUTANTS REVEALS; XYLAN; SUBSTITUTION; EVOLUTION;
D O I
10.3390/ijms25158199
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xylan, one of the most important structures and polysaccharides, plays critical roles in plant development, growth, and defense responses to pathogens. Glucuronic acid substitution of xylan (GUX) functions in xylan sidechain decoration, which is involved in a wide range of physiological processes in plants. However, the specifics of GUXs in trees remain unclear. In this study, the characterization and evolution of the GUX family genes in E. grandis, a fast-growing forest tree belonging to the Myrtaceae family, were performed. A total of 23 EgGUXs were identified from the E. grandis genome, of which all members contained motif 2, 3, 5, and 7. All GUX genes were phylogeneticly clustered into five distinct groups. Among them, EgGUX01 similar to EgGUX05 genes were clustered into group III and IV, which were more closely related to the AtGUX1, AtGUX2, and AtGUX4 members of Arabidopsis thaliana known to possess glucuronyltransferase activity, while most other members were clustered into group I. The light-responsive elements, hormone-responsive elements, growth and development-responsive elements, and stress-responsive elements were found in the promoter cis-acting elements, suggesting the expression of GUX might also be regulated by abiotic factors. RNA-Seq data confirmed that EgGUX02, EgGUX03, and EgGUX10 are highly expressed in xylem, and EgGUX09, EgGUX10, and EgGUX14 were obviously responses to abiotic stresses. The results of this paper will provide a comprehensive determination of the functions of the EgGUX family members, which will further contribute to understanding E. grandis xylan formation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Genome-wide Analysis and Characterization of Eucalyptus grandis TCP Transcription Factors
    Ilhan, Emre
    Kasapoglu, Ayse Gul
    Muslu, Selman
    Aygoren, Ahmed Sidar
    Aydin, Murat
    JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2023, 29 (02): : 413 - 426
  • [22] Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton
    Zhao, Ge
    Song, Yun
    Wang, Caixiang
    Butt, Hamama Islam
    Wang, Qianhua
    Zhang, Chaojun
    Yang, Zuoren
    Liu, Zhao
    Chen, Eryong
    Zhang, Xueyan
    Li, Fuguang
    MOLECULAR GENETICS AND GENOMICS, 2016, 291 (06) : 2173 - 2187
  • [23] Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton
    Ge Zhao
    Yun Song
    Caixiang Wang
    Hamama Islam Butt
    Qianhua Wang
    Chaojun Zhang
    Zuoren Yang
    Zhao Liu
    Eryong Chen
    Xueyan Zhang
    Fuguang Li
    Molecular Genetics and Genomics, 2016, 291 : 2173 - 2187
  • [24] Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape
    Zhang, Yucheng
    Gao, Min
    Singer, Stacy D.
    Fei, Zhangjun
    Wang, Hua
    Wang, Xiping
    PLOS ONE, 2012, 7 (09):
  • [25] Genome-wide identification and analysis of the CNGC gene family in maize
    Hao, Lidong
    Qiao, Xiuli
    PEERJ, 2018, 6
  • [26] Genome-wide identification and analysis of the cotton ALDH gene family
    Gu, Haijing
    Pan, Zongjin
    Jia, Mengxue
    Fang, Hui
    Li, Junyi
    Qi, Yingxiao
    Yang, Yixuan
    Feng, Wenxiang
    Gao, Xin
    Ditta, Allah
    Khan, Muhammad K. R.
    Wang, Wei
    Cao, Yunying
    Wang, Baohua
    BMC GENOMICS, 2024, 25 (01):
  • [27] Genome-wide identification and analysis of the IQM gene family in soybean
    Lv, Tianxiao
    Liu, Qiongrui
    Xiao, Hong
    Fan, Tian
    Zhou, Yuping
    Wang, Jinxing
    Tian, Chang-en
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [28] Genome-wide identification and analysis of the GGCT gene family in wheat
    Zhang, Long
    Sun, Wanting
    Gao, Weidong
    Zhang, Yanyan
    Zhang, Peipei
    Liu, Yuan
    Chen, Tao
    Yang, Delong
    BMC GENOMICS, 2024, 25 (01):
  • [29] Genome-Wide Identification, Expression Analysis and Functional Study of CCT Gene Family in Medicago truncatula
    Ma, Lin
    Yi, Dengxia
    Yang, Junfeng
    Liu, Xiqiang
    Pang, Yongzhen
    PLANTS-BASEL, 2020, 9 (04):
  • [30] Genome-Wide Identification and Preliminary Functional Analysis of BAM (β-Amylase) Gene Family in Upland Cotton
    Yang, Yanlong
    Sun, Fenglei
    Wang, Penglong
    Yusuyin, Mayila
    Kuerban, Wumaierjiang
    Lai, Chengxia
    Li, Chunping
    Ma, Jun
    Xiao, Fei
    GENES, 2023, 14 (11)