Performance Evaluation of CMIP6 Models in Simulating the Dynamic Processes of Arctic-Tropical Climate Connection During Winter

被引:2
|
作者
Sun, Bo [1 ,2 ,3 ]
Li, Wanling [1 ]
Wang, Huijun [1 ,2 ,3 ]
Xue, Rufan [1 ]
Zhou, Siyu [1 ]
Zheng, Yi [1 ]
Cai, Jiarui [1 ]
Tang, Wenchao [1 ]
Dai, Yongling [1 ]
Huang, Yuetong [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Key Lab Meteorol Disasters, Joint Int Res Lab Climate & Environm Change,Minist, Nanjing, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab, Zhuhai, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, Nansen Zhu Int Res Ctr, Beijing, Peoples R China
关键词
Arctic sea ice; ENSO; CMIP6; models; simulation; dynamic processes; teleconnection; SEA-ICE LOSS; WARMING MECHANISM; VARIABILITY; CONVECTION; IMPACTS; EVENTS; ENSO; SST;
D O I
10.1029/2024JD041328
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this study, the performance of 24 Coupled Model Intercomparison Project Phase 6 (CMIP6) models in simulating the dynamic processes of Arctic sea ice concentration (SIC)- and El Ni & ntilde;o-Southern Oscillation (ENSO)- forced teleconnection during winter is subjectively and objectively evaluated. The Arctic SIC-forced teleconnection is associated with a warm Arctic-cold Eurasian pattern of surface temperature (T2m), a low Arctic-high Eurasian pattern of sea level pressure (SLP), and a southeastward propagating wave-train originating from Arctic in the upper troposphere. The ENSO-forced teleconnection is associated with a poleward propagating wave-train originating from tropical Pacific in the upper troposphere, a low North Pacific-high Arctic pattern of SLP, and a cold North Pacific-warm Greenland pattern of T2m. The metrics of Taylor skill scores and Distance between indices of simulation and observation (DISO) are used to objectively and quantitatively evaluate the performance of models. The results of subjective and objective evaluation are essentially consistent. The CanESM5, MPI-ESM1-2-HR, EC-Earth3, and MRI-ESM2-0 models have the best performance in simulating the Arctic SIC-forced teleconnection. The CESM2, ACCESS-CM2, NESM3, NorESM2-MM, CAS-ESM2-0, MRI-ESM2-0 models have the best performance in simulating the ENSO-forced teleconnection. The two best-performing multi-model ensembles well reproduce the dynamic processes of the Arctic SIC- and ENSO- forced teleconnection. The diversity of model performance is attributed to the different skills of different models in simulating the interannual variability of Arctic SIC, the anomalous deep warm high over the Barents-Kara Seas, the interannual variability of tropical Pacific SSTs, and the wave number of poleward propagating Rossby waves. The connection between Arctic and tropical climates has an important influence on the climate in Northern Hemisphere. The Arctic sea ice-driven teleconnection may induce increased cold surges toward the low latitude regions of East Asia, while the El Ni & ntilde;o-Southern Oscillation (ENSO)-driven teleconnection may induce increased temperatures over northern North America and Greenland. The Coupled Model Intercomparison Project Phase 6 (CMIP6) models consists of state-of-the-art numerical models that are widely used in climate simulation and prediction. Hence, it is important to understand the performance of these models in simulating the dynamic processes of Arctic-tropical climate connection and the potential reasons. In this study, the dynamic processes in ocean-atmosphere associated with the Arctic sea ice- and ENSO- driven teleconnection are first analyzed using observed/re-analysis data. The performance of 24 CMIP6 models in simulating the dynamic processes of Arctic sea ice- and ENSO- driven teleconnection is then subjectively and objectively evaluated. The results indicate a diversity of performance in these models. This diversity are mainly caused by the different skills of models in simulating the interannual variability of SIC and ENSO as well as the associated atmospheric circulation anomalies. The performance of CMIP6 models has a diversity in simulating the dynamic processes of Arctic-tropical climate connection Best-performing multi-model ensembles with good skill in simulating dynamic processes of Arctic-tropical climate connection are selected The diversity in performance of models are affected by the skill of models in simulating the interannual variability sea ice and SSTs
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Evaluation of the Performance of CMIP6 Climate Models in Simulating Rainfall over the Philippines
    Ignacio-Reardon, Shelly Jo Igpuara
    Luo, Jing-jia
    ATMOSPHERE, 2023, 14 (09)
  • [2] Evaluation of the performance of CMIP6 models in simulating precipitation over Morocco
    Ayt Ougougdal H.
    Bounoua L.
    Ech-chatir L.
    Yacoubi-Khebiza M.
    Mediterranean Geoscience Reviews, 2024, 6 (2) : 145 - 158
  • [3] Comparison of CMIP6 and CMIP5 models in simulating climate extremes
    Chen, Huopo
    Sun, Jianqi
    Lin, Wenqing
    Xu, Huiwen
    SCIENCE BULLETIN, 2020, 65 (17) : 1415 - 1418
  • [4] Comparing the Arctic climate in Chinese and other CMIP6 models
    Ruilian He
    Mingkeng Duan
    AtmosphericandOceanicScienceLetters, 2023, 16 (06) : 10 - 17
  • [5] Arctic Ocean Amplification in a warming climate in CMIP6 models
    Shu, Qi
    Wang, Qiang
    Arthun, Marius
    Wang, Shizhu
    Song, Zhenya
    Zhang, Min
    Qiao, Fangli
    SCIENCE ADVANCES, 2022, 8 (30)
  • [6] Comparing the Arctic climate in Chinese and other CMIP6 models
    He, Ruilian
    Duan, Mingkeng
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2023, 16 (06)
  • [7] Performance evaluation of CMIP6 HighResMIP models in simulating precipitation over Madagascar
    Randriatsara, Herijaona Hani-Roge Hundilida
    Hu, Zhenghua
    Xu, Xiyan
    Ayugi, Brian
    Sian, Kenny Thiam Choy Lim Kam
    Mumo, Richard
    Ongoma, Victor
    Holtanova, Eva
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2023, 43 (12) : 5401 - 5421
  • [8] Enhanced performance of CMIP6 climate models in simulating historical precipitation in the Florida Peninsula
    Wang, Hui
    Asefa, Tirusew
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2024, 44 (08) : 2758 - 2778
  • [9] Assessment of CMIP6 models' performance in simulating present-day climate in Brazil
    Firpo, Mari Andrea Feldman
    Guimaraes, Bruno dos Santos
    Dantas, Leydson Galvincio
    da Silva, Marcelo Guatura Barbosa
    Alves, Lincoln Muniz
    Chadwick, Robin
    Llopart, Marta Pereira
    de Oliveira, Gilvan Sampaio
    FRONTIERS IN CLIMATE, 2022, 4
  • [10] Evaluation of the performance of CMIP6 models in simulating extreme precipitation and its projected changes in global climate regions
    Zhang, Binglin
    Song, Songbai
    Wang, Huimin
    Guo, Tianli
    Ding, Yibo
    NATURAL HAZARDS, 2025, 121 (02) : 1737 - 1763