Arctic Ocean Amplification in a warming climate in CMIP6 models

被引:55
|
作者
Shu, Qi [1 ,2 ,3 ,4 ]
Wang, Qiang [5 ]
Arthun, Marius [6 ,7 ]
Wang, Shizhu [1 ,2 ,3 ,4 ]
Song, Zhenya [1 ,2 ,3 ,4 ]
Zhang, Min [1 ,2 ,3 ,4 ]
Qiao, Fangli [1 ,2 ,3 ,4 ]
机构
[1] Minist Nat Resources, Inst Oceanog 1, Qingdao, Peoples R China
[2] Minist Nat Resources, Key Lab Marine Sci & Numer Modeling, Qingdao, Peoples R China
[3] Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao, Peoples R China
[4] Shandong Key Lab Marine Sci & Numer Modeling, Qingdao, Peoples R China
[5] Helmholtz Ctr Polar & Marine Res AWI, Alfred Wegener Inst, Bremerhaven, Germany
[6] Univ Bergen, Geophys Inst, Bergen, Norway
[7] Bjerknes Ctr Climate Res, Bergen, Norway
关键词
INTERMEDIATE ATLANTIC WATER; SEA-ICE; POLAR AMPLIFICATION; HEAT-TRANSPORT; BARENTS SEA; VARIABILITY; TEMPERATURE; TIME; DECOMPOSITION; MECHANISMS;
D O I
10.1126/sciadv.abn9755
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arctic near-surface air temperature warms much faster than the global average, a phenomenon known as Arctic Amplification. The change of the underlying Arctic Ocean could influence climate through its interaction with sea ice, atmosphere, and the global ocean, but it is less well understood. Here, we show that the upper 2000 m of the Arctic Ocean warms at 2.3 times the global mean rate within this depth range averaged over the 21st century in the Coupled Model Intercomparison Project Phase 6 Shared Socioeconomic Pathway 585 scenario. We call this phenomenon the "Arctic Ocean Amplification." The amplified Arctic Ocean warming can be attributed to a substantial increase in poleward ocean heat transport, which will continue outweighing sea surface heat loss in the future. Arctic Amplification of both the atmosphere and ocean indicates that the Arctic as a whole is one of Earth's regions most susceptible to climate change.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Substantial Warming of the Atlantic Ocean in CMIP6 Models
    Ren, Qiuping
    Kwon, Young -oh
    Yang, Jiayan
    Huang, Rui xin
    Li, Yuanlong
    Wang, Fan
    [J]. JOURNAL OF CLIMATE, 2024, 37 (11) : 3073 - 3091
  • [2] Arctic Ocean Freshwater in CMIP6 Coupled Models
    Wang, Shizhu
    Wang, Qiang
    Wang, Muyin
    Lohmann, Gerrit
    Qiao, Fangli
    [J]. EARTHS FUTURE, 2022, 10 (09)
  • [3] The Deep Arctic Ocean and Fram Strait in CMIP6 Models
    Heuze, Celine
    Zanowski, Hannah
    Karam, Salar
    Muilwijk, Morven
    [J]. JOURNAL OF CLIMATE, 2023, 36 (08) : 2551 - 2584
  • [4] CMIP6 climate models imply high committed warming
    Chris Huntingford
    Mark S. Williamson
    Femke J. M. M. Nijsse
    [J]. Climatic Change, 2020, 162 : 1515 - 1520
  • [5] CMIP6 climate models imply high committed warming
    Huntingford, Chris
    Williamson, Mark S.
    Nijsse, Femke J. M. M.
    [J]. CLIMATIC CHANGE, 2020, 162 (03) : 1515 - 1520
  • [6] Comparing the Arctic climate in Chinese and other CMIP6 models
    Ruilian He
    Mingkeng Duan
    [J]. Atmospheric and Oceanic Science Letters, 2023, 16 (06) : 10 - 17
  • [7] Comparing the Arctic climate in Chinese and other CMIP6 models
    He, Ruilian
    Duan, Mingkeng
    [J]. ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2023, 16 (06)
  • [8] Comparison of Indian Ocean warming simulated by CMIP5 and CMIP6 models
    Li Jingyi
    Su Jingzhi
    [J]. ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2020, 13 (06) : 604 - 611
  • [9] No Emergence of Deep Convection in the Arctic Ocean Across CMIP6 Models
    Heuze, Celine
    Liu, Hailong
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (04)
  • [10] Annual Mean Arctic Amplification 1970-2020: Observed and Simulated by CMIP6 Climate Models
    Chylek, Petr
    Folland, Chris
    Klett, James D.
    Wang, Muyin
    Hengartner, Nick
    Lesins, Glen
    Dubey, Manvendra K.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (13)