A graph neural network with topic relation heterogeneous multi-level cross-item information for session-based recommendation

被引:3
|
作者
Yang, Fan [1 ]
Peng, Dunlu [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Session-based recommendation; Topic relation heterogeneous cross-item graph; Channel-hybrid attention; Label smoothing;
D O I
10.1016/j.is.2024.102380
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of session-based recommendation (SBR) mainly analyzes the anonymous user's historical behavior records to predict the next possible interaction item and recommend the result to the user. However, due to the anonymity of users and the sparsity of behavior records, recommendation results are often inaccurate. The existing SBR models mainly consider the order of items within a session and rarely analyze the complex transition relationship between items, and additionally, they are inadequate at mining higher-order hidden relationship between different sessions. To address these issues, we propose a topic relation heterogeneous multi-level cross-item information graph neural network (TRHMCI-GNN) to improve the performance of recommendation. The model attempts to capture hidden relationship between items through topic classification and build a topic relation heterogeneous cross-item global graph. The graph contains inter-session cross-item information as well as hidden topic relation among sessions. In addition, a self-loop star graph is established to learn the intra-session cross-item information, and the self-connection attributes are added to fuse the information of each item itself. By using channel-hybrid attention mechanism, the item information of different levels is pooled by two channels: max-pooling and mean-pooling, which effectively fuse the item information of cross-item global graph and self-loop star graph. In this way, the model captures the global information of the target item and its individual features, and the label smoothing operation is added for recommendation. Extensive experimental results demonstrate that the recommendation performance of TRHMCI-GNN model is superior to the comparable baseline models on the three real datasets Diginetica, Yoochoose1/64 and Tmall. The code is available now.1 1
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Sequence-Aware Graph Neural Network Incorporating Neighborhood Information for Session-Based Recommendation
    Huang, Liya
    Li, Ran
    Lei, Jingsheng
    Ji, Yuan
    Feng, Guanglu
    Shi, Wenbing
    Yang, Shengying
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [42] Multi-session aware hypergraph neural network for session-based recommendation
    Yunbo Rao
    Tongze Mu
    Shaoning Zeng
    Junming Xue
    Jinhua Liu
    Multimedia Tools and Applications, 2024, 83 : 12757 - 12774
  • [43] Graph-Enhanced Multi-Task Learning of Multi-Level Transition Dynamics for Session-based Recommendation
    Huang, Chao
    Chen, Jiahui
    Xia, Lianghao
    Xu, Yong
    Dai, Peng
    Chen, Yanqing
    Bo, Liefeng
    Zhao, Jiashu
    Huang, Jimmy Xiangji
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4123 - 4130
  • [44] Multi-session aware hypergraph neural network for session-based recommendation
    Rao, Yunbo
    Mu, Tongze
    Zeng, Shaoning
    Xue, Junming
    Liu, Jinhua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 12757 - 12774
  • [45] Session-based Recommendation Algorithm Based on Heterogeneous Graph Transformer
    Wang, Qiushi
    Zhang, Wenyu
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [46] GTGNN: Global Graph and Taxonomy Tree for Graph Neural Network Session-Based Recommendation
    Wu, Zhenhong
    Liu, Yuzheng
    Shi, Xin
    Zhao, Xueqing
    Wang, Yun
    Zhang, Guigang
    WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024, 2024, 14883 : 29 - 40
  • [47] A Session Recommendation Model Based on Heterogeneous Graph Neural Network
    An, Zhiwei
    Tan, Yirui
    Zhang, Jinli
    Jiang, Zongli
    Li, Chen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 160 - 171
  • [48] Disentangled Graph Neural Networks for Session-Based Recommendation
    Li, Ansong
    Cheng, Zhiyong
    Liu, Fan
    Gao, Zan
    Guan, Weili
    Peng, Yuxin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 7870 - 7882
  • [49] Star Graph Neural Networks for Session-based Recommendation
    Pan, Zhiqiang
    Cai, Fei
    Chen, Wanyu
    Chen, Honghui
    de Rijke, Maarten
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1195 - 1204
  • [50] Transition Information Enhanced Disentangled Graph Neural Networks for session-based recommendation
    Li, Ansong
    Zhu, Jihua
    Li, Zhongyu
    Cheng, Haozhe
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210