A general framework for multi-step ahead adaptive conformal heteroscedastic time series forecasting

被引:0
|
作者
Sousa, Martim [1 ]
Tome, Ana Maria [1 ]
Moreira, Jose [1 ]
机构
[1] Univ Aveiro, IEETA, DETI, P-3810193 Aveiro, Portugal
关键词
Conformal prediction; Conformalized quantile regression; Conformal time series forecasting; Distribution shift; Multi-step ahead forecasting; PREDICTION INTERVALS;
D O I
10.1016/j.neucom.2024.128434
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi- output conformalized quantile regression (AEnbMIMOCQR) that enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate alpha in a distribution-free manner. Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable. Moreover, the resulting prediction intervals, besides being empirically valid along the forecast horizon, do not neglect heteroscedasticity. AEnbMIMOCQR is designed to be robust to distribution shifts, which means that its prediction intervals remain reliable over an unlimited period of time, without entailing retraining or imposing unrealistic strict assumptions on the data-generating process. Through methodically experimentation, we demonstrate that our approach outperforms other competitive methods on both real-world and synthetic datasets. The code used in the experimental part and a tutorial on how to use AEnbMIMOCQR can be found at the following GitHub repository: https://github.com/Quilograma/AEnbMIMOCQR.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multi-scale adaptive attention-based time-variant neural networks for multi-step time series forecasting
    Gao Changxia
    Zhang Ning
    Li Youru
    Lin Yan
    Wan Huaiyu
    Applied Intelligence, 2023, 53 : 28974 - 28993
  • [22] A novel multi-step adaptive prediction method for chaotic time series
    Meng, QF
    Zhang, Q
    Mu, WY
    ACTA PHYSICA SINICA, 2006, 55 (04) : 1666 - 1671
  • [23] Multi-step time series forecasting on the temperature of lithium-ion batteries
    Wan, Zijing
    Kang, Yilin
    Ou, Renwei
    Xue, Song
    Xu, Dongwei
    Luo, Xiaobing
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [24] Factor-Based Framework for Multivariate and Multi-step-ahead Forecasting of Large Scale Time Series
    De Stefani, Jacopo
    Bontempi, Gianluca
    FRONTIERS IN BIG DATA, 2021, 4
  • [25] Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models
    Ouyang, Yicun
    Yin, Hujun
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2018, 28 (04)
  • [26] Robustness of LSTM neural networks for multi-step forecasting of chaotic time series
    Sangiorgio, Matteo
    Dercole, Fabio
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [27] Multi-step forecasting for big data time series based on ensemble learning
    Galicia, A.
    Talavera-Llames, R.
    Troncoso, A.
    Koprinska, I.
    Martinez-Alvarez, F.
    KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 830 - 841
  • [28] Adaptive Regularized ELM and Improved VMD method for Multi-step ahead Electricity Price Forecasting Grid
    Deepa, S. N.
    Gobu, B.
    Jaikumar, S.
    Arulmozhi, N.
    Kanimozhi, P.
    Victoire, Aruldoss Albert T.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1255 - 1260
  • [29] Multi-step forecasting of multivariate time series using multi-attention collaborative network
    He, Xiaoyu
    Shi, Suixiang
    Geng, Xiulin
    Yu, Jie
    Xu, Lingyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [30] Univariate model for hour ahead multi-step solar irradiance forecasting
    Gupta, Priya
    Singh, Rhythm
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 494 - 501