Clinical immunity to malaria involves epigenetic reprogramming of innate immune cells

被引:0
|
作者
Nideffer, Jason [1 ]
Ty, Maureen [1 ]
Donato, Michele [1 ]
John, Rek [2 ]
Kajubi, Richard [2 ]
Ji, Xuhuai [3 ]
Nankya, Felistas [2 ]
Musinguzi, Kenneth [2 ]
Press, Kathleen Dantzler [1 ]
Yang, Nora [1 ]
Camanag, Kylie [1 ]
Greenhouse, Bryan [4 ]
Kamya, Moses [5 ]
Feeney, Margaret E. [6 ]
Dorsey, Grant [4 ]
Utz, Paul J. [1 ]
Pulendran, Bali [1 ]
Khatri, Purvesh [1 ]
Jagannathan, Prasanna [1 ]
机构
[1] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[2] Infect Dis Res Collaborat, Kampala, Uganda
[3] Stanford Univ, Inst Immun Transplantat & Infect, Stanford, CA 94305 USA
[4] Univ Calif San Francisco, Dept Med, San Francisco, CA 94142 USA
[5] Makerere Univ, Sch Med, Kampala, Uganda
[6] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94142 USA
来源
PNAS NEXUS | 2024年 / 3卷 / 08期
基金
美国国家卫生研究院;
关键词
DISEASE TOLERANCE; INFECTION; INFLAMMATION; TRANSMISSION; EXPANSION; COHORT;
D O I
10.1093/pnasnexus/pgae325
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The regulation of inflammation is a critical aspect of disease tolerance and naturally acquired clinical immunity to malaria. Here, we demonstrate using RNA sequencing and epigenetic landscape profiling by cytometry by time-of-flight, that the regulation of inflammatory pathways during asymptomatic parasitemia occurs downstream of pathogen sensing-at the epigenetic level. The abundance of certain epigenetic markers (methylation of H3K27 and dimethylation of arginine residues) and decreased prevalence of histone variant H3.3 correlated with suppressed cytokine responses among monocytes of Ugandan children. Such an epigenetic signature was observed across diverse immune cell populations and not only characterized active asymptomatic parasitemia but also correlated with future long-term disease tolerance and clinical immunity when observed in uninfected children. Pseudotime analyses revealed a potential trajectory of epigenetic change that correlated with a child's age and recent parasite exposure and paralleled the acquisition of clinical immunity. Thus, our data support a model whereby exposure to Plasmodium falciparum induces epigenetic changes that regulate excessive inflammation and contribute to naturally acquire clinical immunity to malaria.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Editorial: Epigenetic Regulation of Innate Immunity
    de Winther, Menno P. J.
    Palaga, Tanapat
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [22] Epigenetic Regulation of Innate Immunity by microRNAs
    Boosani, Chandra S.
    Agrawal, Devendra K.
    ANTIBODIES, 2016, 5 (02)
  • [23] Innate Immune Pathways in Atherosclerosis-From Signaling to Long-Term Epigenetic Reprogramming
    Aronova, Arailym
    Tosato, Federica
    Naser, Nawraa
    Asare, Yaw
    CELLS, 2023, 12 (19)
  • [24] Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes
    Wen, Haitao
    Schaller, Matthew A.
    Dou, Yali
    Hogaboam, Cory M.
    Kunkel, Steven L.
    JOURNAL OF LEUKOCYTE BIOLOGY, 2008, 83 (03) : 439 - 446
  • [25] Epigenetic memory of coronavirus infection in innate immune cells and their progenitors
    Cheong, Jin-Gyu
    Ravishankar, Arjun
    Sharma, Siddhartha
    Parkhurst, Christopher N.
    Grassmann, Simon A.
    Wingert, Claire K.
    Laurent, Paoline
    Ma, Sai
    Paddock, Lucinda
    Miranda, Isabella C.
    Karakaslar, Emin Onur
    Nehar-Belaid, Djamel
    Thibodeau, Asa
    Bale, Michael J.
    Kartha, Vinay K.
    Yee, Jim K.
    Mays, Minh Y.
    Jiang, Chenyang
    Daman, Andrew W.
    de Paz, Alexia Martinez
    Ahimovic, Dughan
    Ramos, Victor
    Lercher, Alexander
    Nielsen, Erik
    Alvarez-Mulett, Sergio
    Zheng, Ling
    Earl, Andrew
    Yallowitz, Alisha
    Robbins, Lexi
    Lafond, Elyse
    Weidman, Karissa L.
    Racine-Brzostek, Sabrina
    Yang, He S.
    Price, David R.
    Leyre, Louise
    Rendeiro, Andre F.
    Ravichandran, Hiranmayi
    Kim, Junbum
    Borczuk, Alain C.
    Rice, Charles M.
    Jones, R. Brad
    Schenck, Edward J.
    Kaner, Robert J.
    Chadburn, Amy
    Zhao, Zhen
    Pascual, Virginia
    Elemento, Olivier
    Schwartz, Robert E.
    Buenrostro, Jason D.
    Niec, Rachel E.
    CELL, 2023, 186 (18) : 3882 - +
  • [26] Molecular nanomachines for in situ reprogramming of innate immunity
    Matosevic, Sandro
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2017, 5
  • [27] Compartment diversity in innate immune reprogramming
    Rasid, Orhan
    Cavaillon, Jean-Marc
    MICROBES AND INFECTION, 2018, 20 (03) : 156 - 165
  • [28] Microglial innate memory and epigenetic reprogramming in neurological disorders
    Martins-Ferreira, Ricardo
    Leal, Barbara
    Costa, Paulo Pinho
    Ballestar, Esteban
    PROGRESS IN NEUROBIOLOGY, 2021, 200
  • [29] Lysosomal peptidases in innate immune cells: implications for cancer immunity
    Jakos, Tanja
    Pislar, Anja
    Fonovic, Ursa
    Kos, Janko
    CANCER IMMUNOLOGY IMMUNOTHERAPY, 2020, 69 (02) : 275 - 283
  • [30] Do adaptive immune cells suppress or activate innate immunity?
    Zhao, Jie
    Yang, Xuanming
    Auh, Sogyong L.
    Kim, Kwang Dong
    Tang, Hong
    Fu, Yang-Xin
    TRENDS IN IMMUNOLOGY, 2009, 30 (01) : 8 - 12