Regularity results for quasiminima of a class of double phase problems

被引:0
|
作者
Nastasi, Antonella [1 ]
Camacho, Cintia Pacchiano [2 ]
机构
[1] Univ Palermo, Dept Engn, Viale Sci, I-90128 Palermo, Italy
[2] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
关键词
Primary; 49N60; 31E05; Secondary; 30L99; 35J60; HOLDER CONTINUITY; SOBOLEV SPACES; ELLIPTIC-EQUATIONS; MINIMIZERS; FUNCTIONALS; MINIMA; INTEGRALS;
D O I
10.1007/s00208-024-02947-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove boundedness, H & ouml;lder continuity, Harnack inequality results for local quasiminima to elliptic double phase problems of p-Laplace type in the general context of metric measure spaces. The proofs follow a variational approach and they are based on the De Giorgi method, a careful phase analysis and estimates in the intrinsic geometries.
引用
收藏
页码:1291 / 1345
页数:55
相关论文
共 50 条
  • [21] Ahlfors regularity of Mumford-Shah quasiminima
    Siaudeau, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (12): : 1697 - 1731
  • [22] Regularity results for a class of non-differentiable obstacle problems
    Eleuteri, Michela
    di Napoli, Antonia Passarelli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [23] Regularity results for a class of nonlinear fractional Laplacian and singular problems
    Arora, Rakesh
    Giacomoni, Jacques
    Warnault, Guillaume
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (03):
  • [24] Regularity results for a class of nonlinear fractional Laplacian and singular problems
    Rakesh Arora
    Jacques Giacomoni
    Guillaume Warnault
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [25] On a class of critical double phase problems
    Farkas, Csaba
    Fiscella, Alessio
    Winkert, Patrick
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [26] LOCAL BOUNDEDNESS AND LOCAL REGULARITY RESULTS IN DOUBLE OBSTACLE PROBLEMS
    Tong, Yu-Xia
    Gu, Jian-Tao
    Hou, Xiu-Li
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 205 - 214
  • [27] Regularity for double phase problems under additional integrability assumptions
    Ok, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [28] Regularity results for a class of elliptic problems hypothetically weak in growth and differentiability
    Esposito, L
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2A : 103 - 106
  • [29] Lipschitz regularity results for a class of obstacle problems with nearly linear growth
    Giacomo Bertazzoni
    Samuele Riccò
    Journal of Elliptic and Parabolic Equations, 2020, 6 : 883 - 918
  • [30] Lipschitz regularity results for a class of obstacle problems with nearly linear growth
    Bertazzoni, Giacomo
    Ricco, Samuele
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (02) : 883 - 918