Regularity results for quasiminima of a class of double phase problems

被引:0
|
作者
Nastasi, Antonella [1 ]
Camacho, Cintia Pacchiano [2 ]
机构
[1] Univ Palermo, Dept Engn, Viale Sci, I-90128 Palermo, Italy
[2] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
关键词
Primary; 49N60; 31E05; Secondary; 30L99; 35J60; HOLDER CONTINUITY; SOBOLEV SPACES; ELLIPTIC-EQUATIONS; MINIMIZERS; FUNCTIONALS; MINIMA; INTEGRALS;
D O I
10.1007/s00208-024-02947-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove boundedness, H & ouml;lder continuity, Harnack inequality results for local quasiminima to elliptic double phase problems of p-Laplace type in the general context of metric measure spaces. The proofs follow a variational approach and they are based on the De Giorgi method, a careful phase analysis and estimates in the intrinsic geometries.
引用
收藏
页码:1291 / 1345
页数:55
相关论文
共 50 条