Analysis of Fracturing Expansion Law of Shale Reservoir by Supercritical CO2 Fracturing and Mechanism Revealing

被引:1
|
作者
Wang, Li [1 ]
Zheng, Aiwei [1 ]
Lu, Wentao [1 ]
Shen, Tong [1 ]
Wang, Weixi [1 ]
Wei, Lai [1 ]
Chang, Zhen [1 ]
Li, Qingchao [2 ]
机构
[1] Sinopec Jianghan Oilfield Co, Explorat & Dev Res Inst, Wuhan 430223, Peoples R China
[2] Henan Polytech Univ, Sch Energy Sci & Engn, Jiaozuo 454003, Peoples R China
关键词
enhanced oil recovery; unconventional shale reservoir; CO2; utilization; reservoir fracture propagation; geological evaluation; CRACK INITIATION; PROPAGATION; WATER; TEMPERATURE; PERFORMANCE; SIMULATION; FLUIDS; MODEL; OIL;
D O I
10.3390/en17163865
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The rapid expansion of reservoir fractures and the enlargement of the area affected by working fluids can be accomplished solely through fracturing operations of oilfield working fluids in geological reservoirs. Supercritical CO2 is regarded as an ideal medium for shale reservoir fracturing owing to the inherent advantages of environmental friendliness, excellent capacity, and high stability. However, CO2 gas channeling and complex propagation of fractures in shale reservoirs hindered the commercialization of Supercritical CO2 fracturing technology. Herein, a simulation method for Supercritical CO2 fracturing based on cohesive force units is proposed to investigate the crack propagation behavior of CO2 fracturing technology under different construction parameters. Furthermore, the shale fracture propagation mechanism of Supercritical CO2 fracturing fluid is elucidated. The results indicated that the propagation ability of reservoir fractures and Mises stress are influenced by the fracturing fluid viscosity, fracturing azimuth angle, and reservoir conditions (temperature and pressure). An azimuth angle of 30 degrees can achieve a maximum Mises stress of 3.213 x 10(7) Pa and a crack width of 1.669 x 10(-2) m. However, an apparent viscosity of 14 x 10(-6) Pa<middle dot>s results in a crack width of only 2.227 x 10(-2) m and a maximum Mises stress of 4.459 x 10(7) Pa. Additionally, a weaker fracture propagation ability and reduced Mises stress are exhibited at the fracturing fluid injection rate. As a straightforward model to synergistically investigate the fracture propagation behavior of shale reservoirs, this work provides new insights and strategies for the efficient extraction of shale reservoirs.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Evolution mechanism of coal chemical structure after supercritical CO2 transient fracturing
    Li, Yunzhuo
    Ji, Huaijun
    Sasmito, Agus P.
    Hu, Shaobin
    Han, Chu
    FUEL, 2025, 379
  • [42] Analysis of Fluid-Structure Interaction during Fracturing with Supercritical CO2
    Cheng, Jiarui
    Yang, Yirong
    Ye, Sai
    Luo, Yucheng
    Peng, Bilian
    Fluid Dynamics and Materials Processing, 2024, 20 (12): : 2887 - 2906
  • [43] Experiment of supercritical CO2 fracturing: Invalid experimental data analysis and enlightenment
    Wang, Haizhu
    Yang, Bing
    Zheng, Yong
    Li, Yingjie
    Yan, Wanjuan
    Shi, Xiaomei
    AIP ADVANCES, 2019, 9 (06)
  • [44] Nanoscale Analysis of Shale Matrix Alteration after Supercritical CO2 Treatment: Implications for scCO2 Fracturing in Shales
    Memon, Shoaib
    Verrall, Michael
    Lebedev, Maxim
    Giwelli, Ausama
    Keshavarz, Alireza
    Xie, Quan
    Sarmadivaleh, Mohammad
    ENERGY & FUELS, 2024, 38 (03) : 1873 - 1890
  • [45] Key problems and solutions in supercritical CO2 fracturing technology
    Wang, Haizhu
    Li, Gensheng
    Zhu, Bin
    Sepehrnoori, Kamy
    Shi, Lujie
    Zheng, Yong
    Shi, Xiaomei
    FRONTIERS IN ENERGY, 2019, 13 (04) : 667 - 672
  • [46] Key problems and solutions in supercritical CO2 fracturing technology
    Haizhu Wang
    Gensheng Li
    Bin Zhu
    Kamy Sepehrnoori
    Lujie Shi
    Yong Zheng
    Xiaomei Shi
    Frontiers in Energy, 2019, 13 : 667 - 672
  • [47] Research status and prospects of supercritical CO2 fracturing technology
    Wang, Haizhu
    Li, Gensheng
    Zheng, Yong
    Sepehrnoori, Kamy
    Shen, Zhonghou
    Yang, Bing
    Shi, Lujie
    Shiyou Xuebao/Acta Petrolei Sinica, 2020, 41 (01): : 116 - 126
  • [48] Study on Filtration and Damage Characteristics of Modified Dry CO2 Fracturing Fluid in Shale Gas Reservoir
    Xu, Guixi
    Wang, Shuzhong
    Luo, Xiangrong
    Jing, Zefeng
    2017 3RD INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND MATERIALS SCIENCE (EEMS 2017), 2017, 94
  • [49] Analysis of Dry CO2 Fracturing Technology for Efficient Development of Shale Gas Reservoirs
    Luo, Xiangrong
    Wang, Shuzhong
    Jing, Zefeng
    Xu, Guixi
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON MEASUREMENT, INSTRUMENTATION AND AUTOMATION (ICMIA 2016), 2016, 138 : 30 - 33
  • [50] Experimental evaluation and thickening mechanism of long tube in supercritical CO2 fracturing fluid tackifier
    Huang, Qian
    Fu, Meilong
    Zhao, Zhongcong
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (06): : 2939 - 2946