Mechanistic study on photocatalysis properties of Cu3N/TiO2 heterojunction nanorods

被引:0
|
作者
Guo, Yanrui [1 ]
Wang, Yixuan [1 ]
He, Tao [1 ]
Han, Jianhua [1 ]
Wang, Mingchao [1 ]
Yan, Huiyu [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
关键词
D O I
10.1016/j.mssp.2024.108724
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Cu3N/TiO2 3 N/TiO 2 heterojunction nanorods are fabricated by a magnetron sputtering method. The morphology, light absorption, and photoelectrochemical (PEC) properties are studied. Compared with the pristine TiO2, 2 , the heterojunction takes a lower optical band gap of about 1.3 eV, which can enhance the utilization sunlight. The PEC tests show that the Cu3N/TiO2 3 N/TiO 2 heterojunction with N2 partial pressure 100 % can improve the photocatalytic efficiency significantly. The photocurrent density of Cu3N/TiO2 3 N/TiO 2 is 4 times higher than that of TiO2, 2 , which can be attributed by the smaller band gap of Cu3N/TiO2 3 N/TiO 2 and the enhanced charge separation of heterojunction. By the first-principles calculation method, it was determined that the Cu3N/TiO2 3 N/TiO 2 heterojunction presents type II band alignment. suggests that the charge transfer mechanism of TiO2/Cu3N 2 /Cu 3 N junction is sensitive to the experimental conditions. Z-scheme and p-n junction scheme can be formed with low and high N2 2 partial pressure, respectively. Moreover, the spin polarized states are found near the interface of Cu3N/TiO2, 3 N/TiO 2 , which can modulate the interfacial charge transfer. We can also predict that the PEC reaction of the TiO2/Cu3N 2 /Cu 3 N heterojunction structure can be modulated by the magnetic field.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Study on the Enhanced Mechanism of TiO2 Photocatalysis by Fe3+
    Zhang, Junwei
    Fu, Dafang
    Yang, Xiaoli
    Deng, Lin
    2011 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT (ETM 2011), 2011, : 151 - 155
  • [32] Growth, structural and optical properties of Cu3N films
    Borsa, DM
    Boerma, DO
    SURFACE SCIENCE, 2004, 548 (1-3) : 95 - 105
  • [33] Effect of Cu3N layer thickness on Corrosion and Ni release properties of Cu3N/NiTiCu shape memory thin films
    Kaur, Navjot
    Kaur, Davinder
    PHYSICS OF SEMICONDUCTOR DEVICES, 2014, : 457 - 459
  • [34] Photocatalysis properties of Pt doped TiO2 film
    Bai, Ai-Ying
    Liang, Wei
    Yun, Jie
    Zhang, Yu
    Xue, Jin-Bo
    Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment, 2010, 31 (02): : 6 - 9
  • [35] Efficient photocatalysis of Cu doped TiO2/g-C3N4 for the photodegradation of methylene blue
    Liyanaarachchi, Heshan
    Thambiliyagodage, Charitha
    Liyanaarachchi, Chamika
    Samarakoon, Upeka
    ARABIAN JOURNAL OF CHEMISTRY, 2023, 16 (06)
  • [36] Preparation and Photocatalysis Properties of TiO2/Graphene Nanocomposites
    Wang, Dongfang
    Chen, Da
    Ping, Guangxing
    Wang, Chao
    Chen, Haizhen
    Shu, Kangying
    FRONTIERS OF ADVANCED MATERIALS AND ENGINEERING TECHNOLOGY, PTS 1-3, 2012, 430-432 : 1005 - 1008
  • [37] Mechanical properties of cubic Cu3N and Cu4N: A theoretical investigation
    Li, Shina
    Hao, Jingjing
    Yu, Suye
    VACUUM, 2021, 191
  • [38] Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites
    Zou, C. W.
    Wang, J.
    Xie, W.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 478 : 22 - 28
  • [39] Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis
    Wang, Changhua
    Zhang, Xintong
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (06) : 992 - 999
  • [40] Spatial Heterojunction in Nanostructured TiO2 and Its Cascade Effect for Efficient Photocatalysis
    Lu, Yi
    Liu, Xiao-Long
    He, Li
    Zhang, Yue-Xing
    Hu, Zhi-Yi
    Tian, Ge
    Cheng, Xiu
    Wu, Si-Ming
    Li, Yuan-Zhou
    Yang, Xiao-Hang
    Wang, Li-Ying
    Liu, Jia-Wen
    Janiak, Christoph
    Chang, Gang-Gang
    Li, Wei-Hua
    Van Tendeloo, Gustaaf
    Yang, Xiao-Yu
    Su, Bao-Lian
    NANO LETTERS, 2020, 20 (05) : 3122 - 3129