Fault diagnosis method for lithium-ion batteries based on the combination of voltage prediction and Z-score

被引:1
|
作者
Liao, Li [1 ]
Li, Xunbo [1 ]
Yang, Da [1 ]
Wu, Tiezhou [1 ]
Jiang, Jiuchun [1 ]
机构
[1] Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Energ, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Voltage prediction; z-score; Fault detection; real vehicle data; CIRCUIT; NETWORK;
D O I
10.1080/15435075.2024.2376707
中图分类号
O414.1 [热力学];
学科分类号
摘要
Safety accidents in new energy electric vehicles caused by lithium-ion battery failures occur frequently, and the timely and accurate diagnosis of failures in battery packs is crucial. Voltage, as one of the primary characterization parameters of lithium-ion battery malfunctions, is widely utilized in fault diagnosis. This article proposes a lithium-ion battery fault diagnosis method Fault diagnosis method based on the combination of voltage prediction and Z-score. Firstly, the stable trend component is extracted from the battery voltage data using variational mode decomposition, which avoids the influence of noisy signals and random perturbations to the greatest extent. Subsequently, a TCN-BiLSTM-attention model is designed to estimate the average voltage of the battery under normal conditions. Finally, the residuals between the estimated and individual cell voltages are calculated, and the Z-score is utilized to locate and judge whether the battery is caused by the occurrence of a fault. Through verification with real vehicle data and experimental data, the proposed method effectively identifies abnormal battery cells. Compared to the correlation coefficient method, this approach exhibits superior applicability.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Sensor fault diagnosis modeling of lithium-ion batteries for electric vehicles
    Yuan, Jinhai
    Li, Sisi
    Fan, Xin
    MATERIALS EXPRESS, 2023, 13 (05) : 875 - 886
  • [32] Accurate Prediction Approach of SOH for Lithium-Ion Batteries Based on LSTM Method
    Zhang, Lijun
    Ji, Tuo
    Yu, Shihao
    Liu, Guanchen
    BATTERIES-BASEL, 2023, 9 (03):
  • [33] Lithium-ion battery fault diagnosis method based on KPCA-MTCN
    Tan, Qipeng
    Li, Yongqi
    Chen, Man
    Zhang, Lingxian
    Peng, Peng
    Wan, Minhui
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (12): : 2297 - 2306
  • [34] A Hybrid Drive Method for Capacity Prediction of Lithium-Ion Batteries
    Xu, Tingting
    Peng, Zhen
    Liu, Dunge
    Wu, Lifeng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) : 1000 - 1012
  • [35] Adaptive Fitting Capacity Prediction Method for Lithium-Ion Batteries
    Chu, Xiao
    Xue, Fangyu
    Liu, Tao
    Shao, Junya
    Li, Junfu
    AUTOMOTIVE INNOVATION, 2022, 5 (04) : 359 - 375
  • [36] An Online State of Health Estimation Method for Lithium-ion Batteries Based on Integrated Voltage
    Zhou, Yapeng
    Huang, Miaohua
    Pecht, Michael
    2018 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2018,
  • [37] Grey prediction method for forecasting the capacity of lithium-ion batteries
    Kim, Daehyun
    Goh, Taedong
    Park, Minjun
    Seo, Minhwan
    Kim, Sang Woo
    2015 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2015, : 1010 - 1012
  • [38] Adaptive Fitting Capacity Prediction Method for Lithium-Ion Batteries
    Xiao Chu
    Fangyu Xue
    Tao Liu
    Junya Shao
    Junfu Li
    Automotive Innovation, 2022, 5 : 359 - 375
  • [39] A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model
    Fang, Qiaohua
    Wei, Xuezhe
    Lu, Tianyi
    Dai, Haifeng
    Zhu, Jiangong
    ENERGIES, 2019, 12 (07)
  • [40] Fault diagnosis of lithium-ion batteries based on wavelet packet decomposition and Manhattan average distance
    Liao, Li
    Yang, Da
    Li, Xunbo
    Jiang, Jiuchun
    Wu, Tiezhou
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (12) : 2828 - 2842