Stimulus-response signaling dynamics characterize macrophage polarization states

被引:2
|
作者
Singh, Apeksha [1 ,2 ]
Sen, Supriya [2 ,3 ]
Iter, Michael [1 ,2 ,4 ]
Adelaja, Adewunmi [1 ,2 ,5 ]
Luecke, Stefanie [1 ,2 ]
Guo, Xiaolu [1 ,2 ]
Hoffmann, Alexander [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Signaling Syst Lab, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Quantitat & Computat Biosci, Los Angeles, CA 90095 USA
[3] Amgen Inc, One Amgen Ctr Dr, Thousand Oaks, CA 91320 USA
[4] Univ Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
[5] Harvard Combined Dermatol Residence Training Progr, Boston, MA 02114 USA
关键词
NF-KAPPA-B; GENE-EXPRESSION; CELL-POPULATIONS; TEMPORAL CONTROL; FOLD CHANGE; SPECIFICITY; ACTIVATION; INFORMATION; MURINE;
D O I
10.1016/j.cels.2024.05.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The functional state of cells is dependent on their microenvironmental context. Prior studies described how polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we characterized the functional responses of 6 differentially polarized macrophage populations by measuring the dynamics of transcription factor nuclear factor KB (NF-KB) in response to 8 stimuli. The resulting dataset of single-cell NF-KB trajectories was analyzed by three approaches: (1) machine learning on time-series data revealed losses of stimulus distinguishability with polarization, reflecting canalized effector functions. (2) Informative trajectory features driving stimulus distinguishability ("signaling codons") were identified and used for mapping a cell state landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic parameters, inferred using a mechanistic NF-KB network model, provided an alternative mapping of cell states and correctly predicted biochemical findings. Together, this work demonstrates that a single analyte's dynamic trajectories may distinguish the functional states of single cells and molecular network states underlying them. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:563 / 577.e6
页数:22
相关论文
共 50 条
  • [31] Effects of stimulus-stimulus compatibility and stimulus-response compatibility on response inhibition
    Verbruggen, F
    Liefooghe, B
    Notebaert, W
    Vandierendonck, A
    ACTA PSYCHOLOGICA, 2005, 120 (03) : 307 - 326
  • [32] Stimulus-response versus stimulus-stimulus-response learning in cerebellar patients
    S. Richter
    K. Matthies
    T. Ohde
    A. Dimitrova
    E. Gizewski
    A. Beck
    V. Aurich
    D. Timmann
    Experimental Brain Research, 2004, 158 : 438 - 449
  • [33] Independent Processing of Stimulus-Stimulus and Stimulus-Response Conflicts
    Li, Qi
    Nan, Weizhi
    Wang, Kai
    Liu, Xun
    PLOS ONE, 2014, 9 (02):
  • [34] Stimulus modality and stimulus-response compatibility in absolute identification
    Lacouture, Y
    Lacerte, D
    CANADIAN JOURNAL OF EXPERIMENTAL PSYCHOLOGY-REVUE CANADIENNE DE PSYCHOLOGIE EXPERIMENTALE, 1997, 51 (02): : 165 - 170
  • [35] STIMULUS-RESPONSE GENERALIZATION WITH DISCRETE RESPONSE CHOICES
    LEVINE, G
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 1960, 60 (01): : 23 - 29
  • [36] STIMULUS-RESPONSE COMPATIVILITY AND PARALLEL RESPONSE SELECTION
    SMITH, MC
    CANADIAN JOURNAL OF PSYCHOLOGY, 1967, 21 (06): : 496 - 496
  • [37] STIMULUS-RESPONSE AND INDIVIDUAL-RESPONSE SPECIFICITY
    ENGEL, BT
    ARCHIVES OF GENERAL PSYCHIATRY, 1960, 2 (03) : 305 - 313
  • [38] Stimulus and response representations underlying orthogonal stimulus-response compatibility effects
    Yang Seok Cho
    Robert W. Proctor
    Psychonomic Bulletin & Review, 2003, 10 : 45 - 73
  • [39] Stimulus and response representations underlying orthogonal stimulus-response compatibility effects
    Cho, YS
    Proctor, RW
    PSYCHONOMIC BULLETIN & REVIEW, 2003, 10 (01) : 45 - 73
  • [40] Sleep consolidates stimulus-response learning
    Miao, Xiu
    Mueller, Carolin
    Lutz, Nicolas D.
    Yang, Qing
    Waszak, Florian
    Born, Jan
    Rauss, Karsten
    LEARNING & MEMORY, 2023, 30 (09) : 175 - 184