Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production

被引:6
|
作者
Khalil, Islam E. [1 ]
Das, Prasenjit [1 ]
Kucukkececi, Huseyin [1 ]
Dippold, Veit [1 ]
Rabeah, Jabor [2 ]
Tahir, Warisha [1 ]
Roeser, Jerome [1 ]
Schmidt, Johannes [1 ]
Thomas, Arne [1 ]
机构
[1] Tech Univ Berlin, Dept Chem Funct Mat, D-10623 Berlin, Germany
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys LICP, State Key Lab Low Carbon Catalysis & Carbon Dioxid, Lanzhou 730000, Peoples R China
关键词
CRYSTALLINE; DESIGN;
D O I
10.1021/acs.chemmater.4c01298
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Covalent organic frameworks (COFs), an emerging class of crystalline porous materials, have garnered significant interest due to their low density, tunable chemical and physical properties, porous structure, and high surface area. COFs typically exhibit microporosity, i.e., pores below 2 nm influenced by their specific linkers and binding patterns. In addition, some COFs are reported to exhibit small mesopores, especially when extended linkers are used. In applications such as catalysis, where rapid mass transport is a crucial factor, hierarchical pore structures of catalysts are beneficial. This involves the presence of small micropores to generate a large surface area and additional macropores to facilitate the transport of reactants to catalytic sites and to promote product diffusion. This study describes the application of such a hierarchical porous COF (macro-TpBpy) for photocatalysis. The macro-TpBpy architecture seamlessly integrates intrinsic microporosity with additional macropores, thereby yielding a substantial increase in the surface area. The hierarchical porous material demonstrates a promising performance in photocatalytic hydrogen evolution reaction, exhibiting a rate of 4.88 mmol g(-1) h(-1). Notably, this is a fourfold improvement compared to the COF analogue featuring micropores only. Furthermore, the introduction of macropores proved to be beneficial for the photocatalytic production of hydrogen peroxide (H2O2). Specifically, macro-TpBpy exhibited a production rate of 2716 mu mol g(-1) h(-1), in water without sacrificial hole scavengers, whereas pristine TpBpy had a rate of 2134 mu mol g(-1) h(-1). This work thus contributes to the further development of COFs in photocatalysis and shows that, in addition to suitable band structure and surface functionality, the pore size and substrate transport influenced by it must also be considered as important factors.
引用
收藏
页码:8330 / 8337
页数:8
相关论文
共 50 条
  • [21] Understanding photocatalytic hydrogen peroxide production in pure water for benzothiadiazole-based covalent organic frameworks
    Wang, Linyang
    Sun, Jiamin
    Deng, Maojun
    Liu, Chunhui
    Cayan, Servet Ataberk
    Molkens, Korneel
    Geiregat, Pieter
    Morent, Rino
    De Geyter, Nathalie
    Chakraborty, Jeet
    Van Der Voort, Pascal
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (22) : 6463 - 6471
  • [22] Integrating β-ketoenamine linkages into covalent organic frameworks toward efficient overall photocatalytic hydrogen peroxide production
    Shu, Chang
    Xie, Peixuan
    Yang, Xiaoju
    Yang, Xuan
    Gao, Hui
    Tan, Bien
    Wang, Xiaoyan
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (38) : 25927 - 25933
  • [23] Tris(triazolo)triazine-Based Covalent Organic Frameworks for Efficiently Photocatalytic Hydrogen Peroxide Production
    Zhang, Zhenwei
    Zhang, Qi
    Hou, Yuxin
    Li, Jiali
    Zhu, Shanshan
    Xia, Hong
    Yue, Huijuan
    Liu, Xiaoming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (45)
  • [24] Controlling crystallization in covalent organic frameworks to facilitate photocatalytic hydrogen production
    Lin, Zheng
    Yu, Xiangkun
    Zhao, Zijian
    Ding, Ning
    Wang, Changchun
    Hu, Ke
    Zhu, Youliang
    Guo, Jia
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [25] Impact of Interfaces on the Performance of Covalent Organic Frameworks for Photocatalytic Hydrogen Production
    Wang, Lin
    Zhang, Yong
    SMALL, 2025, 21 (03)
  • [26] Effective Strategies in Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Production
    Chen, Mengyao
    Fu, Guang-en
    Zhao, Wenkai
    Zhang, Tao
    CHEMISTRY-A EUROPEAN JOURNAL, 2025,
  • [27] Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials
    Chen, Anqi
    Jiang, Zhiwei
    Tang, Juntao
    Yu, Guipeng
    PROGRESS IN CHEMISTRY, 2024, 36 (03) : 357 - 366
  • [28] Linkage Microenvironment Modulation in Triazine-Based Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Peroxide Production
    Liu, Rongchen
    Zhang, Mengqi
    Zhang, Fulin
    Zeng, Bing
    Li, Xia
    Guo, Zhiguang
    Lang, Xianjun
    SMALL, 2025, 21 (10)
  • [29] Enhancing the crystallinity of covalent organic frameworks to achieve improved photocatalytic hydrogen peroxide production under ambient conditions
    Zhou, Chongsheng
    Tao, Le
    Gao, Jia
    Dong, Jingcun
    Zhu, Qingqing
    Liao, Chunyang
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2025, 153 : 172 - 181
  • [30] Synergistic linkage engineering in covalent organic frameworks for boosting photocatalytic hydrogen evolution
    Du, Changsheng
    Jia, Tongtong
    Na, Wenjing
    Huang, Haojie
    You, Zewen
    Liu, Yunqi
    Song, Wenjing
    Chen, Jianyi
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (08) : 5954 - 5960