Thermosensitive MXene-Based Flexible Wearable Sensors for Multifunctional Human Signals Monitoring

被引:1
|
作者
Pan, Wenlong [1 ]
Xu, Lin [1 ,3 ]
Lamont, Samuel C. [2 ]
Zhang, Yifan [1 ]
Ding, Jianning [1 ]
Vernerey, Franck J. [2 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Peoples R China
[2] Univ Colorado Boulder, Dept Mech Engn, Boulder, CO 80309 USA
[3] Jilin Univ, Key Lab Bion Engn, Minist Educ, Changchun 130012, Peoples R China
来源
ACS APPLIED POLYMER MATERIALS | 2024年 / 6卷 / 16期
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
Ti3C2Tx MXene; double network hydrogel; real-time monitoring; flexible wearable sensors; anisotropic behavior; SENSITIVITY; NANOSHEETS; STRAIN;
D O I
10.1021/acsapm.4c01225
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We developed a multifunctional wearable sensor that can monitor temperature and take anisotropic strain measurements in real time. The material used in this study consisted of covalently cross-linked N-isopropylacrylamide (NIPAM), Ti3C2Tx MXene nanosheets, and Nanoclay particles. The conductivity of the material was then significantly improved (up to 4.762 S/m) by the addition of Fe3+ ions, which interact with the surface of MXene nanosheets. Moreover, the secondary physical networks created by the nanoclay particles, MXene, and Fe3+ ions provided energy dissipation and improved the critical strain and toughness by 75 and 250%, respectively. After incorporating the hydrogel into a flexible sensor, we discovered and characterized a unique anisotropic resistance when taking measurements at different angles with respect to loading. The developed sensor has great strain sensitivity (gauge factor of 1.28), a fast response time (120 ms), and a broad working strain range (approximate to 400%), thus, illustrating promise as a versatile sensor for human signal monitoring.
引用
收藏
页码:9488 / 9498
页数:11
相关论文
共 50 条
  • [31] Recent Advances in MXene-Based Electrochemical Sensors
    Zhao, Ziyi
    Cao, Jiayi
    Zhu, Boyu
    Li, Xinru
    Zhou, Lin
    Su, Bin
    BIOSENSORS-BASEL, 2025, 15 (02):
  • [32] Sacrificial 3D printing to fabricate MXene-based wearable sensors with tunable performance
    Osman, Amr
    Liu, Hui
    Lu, Jian
    CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [33] MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors
    Luan, Huixin
    Zhang, Dongzhi
    Xu, Zhenyuan
    Zhao, Wenhao
    Yang, Chunqing
    Chen, Xiaoya
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (19) : 7604 - 7613
  • [34] Recent Advances in Multi-Scale Piezoresistive Interfaces for MXene-Based Flexible Sensors
    Ge, Chengqi
    Sun, Beibei
    Huang, Yanhui
    Alahi, Md. Eshrat E.
    Ma, Qian
    Wei, Song
    Hui, Yun
    Huang, Zhaoling
    Zeng, Qi
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (08)
  • [35] Highly Stretchable, Elastic, and Sensitive MXene-Based Hydrogel for Flexible Strain and Pressure Sensors
    Lu, Yao
    Qu, Xinyu
    Zhao, Wen
    Ren, Yanfang
    Si, Weili
    Wang, Wenjun
    Wang, Qian
    Huang, Wei
    Dong, Xiaochen
    RESEARCH, 2020, 2020
  • [36] MXene-based wearable supercapacitors and their transformative impact on healthcare
    Iravani, Siavash
    Varma, Rajender S.
    MATERIALS ADVANCES, 2023, 4 (19): : 4317 - 4332
  • [37] MXene-Based Flexible Memory and Neuromorphic Devices
    Li, Yan
    Ding, Guanglong
    Zhai, Yongbiao
    Lv, Ziyu
    Yan, Yan
    Xue, Shuangmei
    Zhou, Kui
    Zhang, Meng
    Zhang, Yutong
    Sun, Qi-Jun
    Liu, Yi
    Roy, Vellaisamy A. L.
    Zhou, Ye
    Han, Su-Ting
    SMALL, 2025,
  • [38] Facile Design of Flexible, Strong, and Highly Conductive MXene-Based Composite Films for Multifunctional Applications
    Wang, Beibei
    Zhang, Weiye
    Lai, Chenhuan
    Liu, Yi
    Guo, Hongwu
    Zhang, Daihui
    Guo, Zhanhu
    SMALL, 2023, 19 (52)
  • [39] Multifunctional biomedical applications of MXene-based hydrogels: A review
    Selvaraj, Satheesh
    Chauhan, Ankush
    Verma, Ritesh
    Viswanathan, K.
    Subbarayan, Rajasekaran
    Ghotekar, Suresh
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 164
  • [40] Construction of MXene-based conductive fabrics and their multifunctional applications
    Lu, Daokun
    Wang, Shifei
    Dong, Qian
    Shi, Naman
    Li, Siqi
    Gan, Lulu
    Zhou, Shuang
    Sha, Sha
    Zhang, Ruquan
    Luo, Lei
    Fangzhi Xuebao/Journal of Textile Research, 2024, 45 (09): : 137 - 145