A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure

被引:1
|
作者
Kan, Junwu [1 ,2 ]
Wu, Silei [1 ]
Lin, Yazhi [1 ]
Kuang, Zhenli [1 ]
Wu, Wenchao [1 ]
Cao, Zhenxin [3 ]
Zhang, Zhonghua [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Inst Precis Machinery & Smart Struct, 688 Yingbin Rd, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Urban Rail Transit Intelligent Operat & Ma, Jinhua, Peoples R China
[3] Zhejiang Normal Univ, Xingzhi Coll, Jinhua, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezoelectric transduction; vibration energy harvester; multiple direction; low frequency; simple-pendulum-induced motion; PERFORMANCE; DESIGN;
D O I
10.1177/1045389X241273065
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vibration energy harvesting using piezoelectric mechanism has attracted much attention for powering wireless sensors over the last decade. This paper proposes a low-frequency multidirectional piezoelectric vibration energy harvester (LM-PVEH) using a universal joint structure. Unlike conventional PVEHs, LM-PVEH utilized a pendulum instead of a proof mass in a typical piezoelectric beam and employed a universal joint to indirectly pluck the piezoelectric beam, ensuring the beam was only subjected to compressive stress. With the multidirectional rotation characteristic of the universal joint, the harvester efficiently scavenged multidirectional energy. To verify the feasibility of principle and investigate the effect of structural parameters on the power generation performance of LM-PVEH, theoretical analysis and experimental test were conducted. The results demonstrated that LM-PVEH exhibited different power-generating characteristics in various vibration directions. The resonant frequency of LM-PVEH could be efficiently tuned by adjusting proof mass and mass distance to accommodate low-frequency environments. The proposed harvester achieved a maximum power of 4.99 mW with the load resistance of 300 k Omega at 7.3 Hz. The LM-PVEH could power 100 LEDs, a temperature sensor, and a transmitting module. Additionally, the successful demonstration of powering a calculator from human motion highlights the practical application of the proposed harvester.
引用
收藏
页码:1335 / 1346
页数:12
相关论文
共 50 条
  • [41] Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration
    Toyabur, R. M.
    Salauddin, M.
    Park, Jae Y.
    CERAMICS INTERNATIONAL, 2017, 43 : S675 - S681
  • [42] Low-frequency broadband multidirectional vibration isolation by piezoelectric smart platform with active control
    Zou, Wentao
    Hu, Ningdong
    Yang, Xue
    Hu, Hongping
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2023, 42 (03) : 1451 - 1465
  • [43] A Broadband Frequency Piezoelectric Vibration Energy Harvester
    Ma Hua-An
    Liu Jing-Quan
    Tang Gang
    Yang Chun-Sheng
    Li Yi-Gui
    He Dan-Nong
    MEMS/NEMS NANO TECHNOLOGY, 2011, 483 : 626 - +
  • [44] Design and performance analysis of the low-frequency and broadband piezoelectric energy harvester
    Laizhao, J.
    Rui, H.
    Weike, W.
    2017 3RD INTERNATIONAL CONFERENCE ON APPLIED MATERIALS AND MANUFACTURING TECHNOLOGY (ICAMMT 2017), 2017, 242
  • [45] A Piezoelectric Spring-Mass System as a Low-Frequency Energy Harvester
    Hu, Hongping
    Hu, Lin
    Yang, Jiashi
    Wang, Hairen
    Chen, Xuedong
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2013, 60 (04) : 846 - 850
  • [46] Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications
    Pertin, Osor
    Guha, Koushik
    Jaksic, Olga
    Jaksic, Zoran
    Iannacci, Jacopo
    MICROMACHINES, 2022, 13 (09)
  • [47] Wideband piezoelectric energy harvester for low-frequency application with plucking mechanism
    Hiraki, Yasuhiro
    Masuda, Arata
    Ikeda, Naoto
    Katsumura, Hidenori
    Kagata, Hiroshi
    Okumura, Hidenori
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2015, 2015, 9431
  • [48] High Performance Hybrid Piezoelectric-Electromagnetic Energy Harvester for Scavenging Energy From Low-Frequency Vibration Excitation
    Yang, Yun
    Cai, Tingting
    Xue, Shuping
    Song, Xiaoguang
    Cui, Xinai
    IEEE ACCESS, 2020, 8 : 206503 - 206513
  • [49] A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration
    Wei, Xiaoxiang
    Zhao, Haibo
    Yu, Junjie
    Zhong, Yiming
    Liao, Yanlin
    Shi, Shiwei
    Wang, Peihong
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2021, 8 (05) : 1537 - 1550
  • [50] A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration
    Xiaoxiang Wei
    Haibo Zhao
    Junjie Yu
    Yiming Zhong
    Yanlin Liao
    Shiwei Shi
    Peihong Wang
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8 : 1537 - 1550