Sparse and integrative principal component analysis for multiview data

被引:0
|
作者
Xiao, Lin [1 ]
Xiao, Luo [1 ]
机构
[1] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
关键词
Dimension reduction; high dimensional data; 2; pound; convergence; sparsity; LARGEST EIGENVALUE; MATRICES; JOINT;
D O I
10.1214/24-EJS2281
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider dimension reduction of multiview data, which are emerging in scientific studies. Formulating multiview data as multivariate data with block structures corresponding to the different views, or views of data, we estimate top eigenvectors from multiview data that have twofold sparsity, elementwise sparsity and blockwise sparsity. We propose a Fantope-based optimization criterion with multiple penalties to enforce the desired sparsity patterns and a denoising step is employed to handle potential presence of heteroskedastic noise across different data views. An alternating direction method of multipliers (ADMM) algorithm is used for optimization. We derive the 2 pound 2 convergence of the estimated top eigenvectors and establish their sparsity and support recovery properties. Numerical studies are used to illustrate the proposed method. Our code is available in https://github.com/lxiao665/Sparse-and-Integrative-PCA. .
引用
收藏
页码:3774 / 3824
页数:51
相关论文
共 50 条
  • [1] Integrative sparse principal component analysis
    Fang, Kuangnan
    Fan, Xinyan
    Zhang, Qingzhao
    Ma, Shuangge
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 1 - 16
  • [2] Integrative sparse principal component analysis of gene expression data
    Liu, Mengque
    Fan, Xinyan
    Fang, Kuangnan
    Zhang, Qingzhao
    Ma, Shuangge
    [J]. GENETIC EPIDEMIOLOGY, 2017, 41 (08) : 844 - 865
  • [3] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [4] Integrative and regularized principal component analysis of multiple sources of data
    Liu, Binghui
    Shen, Xiaotong
    Pan, Wei
    [J]. STATISTICS IN MEDICINE, 2016, 35 (13) : 2235 - 2250
  • [5] Principal component analysis for sparse high-dimensional data
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 566 - 575
  • [6] Sparse logistic functional principal component analysis for binary data
    Rou Zhong
    Shishi Liu
    Haocheng Li
    Jingxiao Zhang
    [J]. Statistics and Computing, 2023, 33
  • [7] Sparse logistic functional principal component analysis for binary data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    [J]. STATISTICS AND COMPUTING, 2023, 33 (01)
  • [8] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [9] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [10] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14