A Novel Apportionment Method Utilizing Particle Mass Size Distribution across Multiple Particle Size Ranges

被引:0
|
作者
Wang, Peizhi [1 ]
Wang, Qingsong [1 ]
Jia, Yuhuan [2 ]
Ma, Jingjin [2 ]
Wang, Chunying [2 ]
Qiao, Liping [3 ]
Fu, Qingyan [3 ]
Mellouki, Abdelwahid [4 ,5 ,6 ]
Chen, Hui [1 ,3 ]
Li, Li [1 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Key Lab Organ Cpd Pollut Control Engn, Shanghai 200444, Peoples R China
[2] Hebei Adv Environm Protect Ind Innovat Ctr Co Ltd, Shijiazhuang 050035, Peoples R China
[3] Shanghai Acad Environm Sci, State Environm Protect Key Lab, Format & Prevent Urban Air Pollut Complex, Shanghai 200233, Peoples R China
[4] Univ Mohammed VI Polytech UM6P, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
[5] Inst Combust Aerotherm React & Environm, Ctr Natl Rech Sci ICARE CNRS, Observ Sci Univ Reg Ctr, F-45071 Orleans, France
[6] Shandong Univ, Environm Res Inst, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
particulate matter; source apportionment; particle mass size distribution; optical particle counter; non-negative matrix factorization; LOW-COST SENSORS; PARTICULATE MATTER; CARBONACEOUS AEROSOLS; ATMOSPHERIC PARTICLES; MATRIX FACTORIZATION; BACKGROUND SITE; AIR-QUALITY; EMISSIONS; ELEMENTS; NUMBER;
D O I
10.3390/atmos15080955
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many cities in China are facing the dual challenge of PM2.5 and PM10 pollution. There is an urgent need to develop a cost-effective method that can apportion both with high-time resolution. A novel and practical apportionment method is presented in this study. It combines the measurement of particle mass size distribution (PMSD) with an optical particle counter (OPC) and the algorithm of normalized non-negative matrix factorization (N-NMF). Applied in the city center of Baoding, Hebei, this method separates four distinct pollution factors. Their sizes (ordered from the smallest to largest) range from 0.16 mu m to 0.6 mu m, 0.16 mu m to 1.0 mu m, 0.5 mu m to 17.0 mu m, and 2.0 mu m to 20.0 mu m, respectively. They correspondingly contribute to PM2.5 (PM10) with portions of 26% (17%), 37% (26%), 33% (41%), and 4% (16%), respectively, on average. The smaller three factors are identified as combustion, secondary, and industrial aerosols because of their high correlation with carbonaceous aerosols, nitrate aerosols, and trace elements of Fe/Mn/Ca in PM2.5, respectively. The largest-sized factor is linked to dust aerosols. The primary origin regions, oxidation degrees, and formation mechanisms of each source are further discussed. This provides a scientific basis for the comprehensive management of PM2.5 and PM10 pollution.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Determination of size and distribution of size of particle by centrifugal methods
    Svedberg, T
    Nichols, JB
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1923, 45 : 2910 - 2917
  • [42] Size analysis II. The particle size distribution
    Kovac, K.
    KEMIJA U INDUSTRIJI-JOURNAL OF CHEMISTS AND CHEMICAL ENGINEERS, 2016, 65 (9-10): : 521 - 522
  • [43] Phenomenology of ultrafine particle concentrations and size distribution across urban Europe
    Trechera, Pedro
    Garcia-Marles, Meritxell
    Liu, Xiansheng
    Reche, Cristina
    Perez, Noemi
    Savadkoohi, Marjan
    Beddows, David
    Salma, Imre
    Vorosmarty, Mate
    Casans, Andrea
    Casquero-Vera, Juan Andres
    Hueglin, Christoph
    Marchand, Nicolas
    Chazeau, Benjamin
    Gille, Gregory
    Kalkavouras, Panayiotis
    Mihalopoulos, Nikos
    Ondracek, Jakub
    Zikova, Nadia
    Niemi, Jarkko V.
    Manninen, Hanna E.
    Green, David C.
    Tremper, Anja H.
    Norman, Michael
    Vratolis, Stergios
    Eleftheriadis, Konstantinos
    Gomez-Moreno, Francisco J.
    Alonso-Blanco, Elisabeth
    Gerwig, Holger
    Wiedensohler, Alfred
    Weinhold, Kay
    Merkel, Maik
    Bastian, Susanne
    Petit, Jean-Eudes
    Favez, Olivier
    Crumeyrolle, Suzanne
    Ferlay, Nicolas
    Dos Santos, Sebastiao Martins
    Putaud, Jean-Philippe
    Timonen, Hilkka
    Lampilahti, Janne
    Asbach, Christof
    Wolf, Carmen
    Kaminski, Heinz
    Altug, Hicran
    Hoffmann, Barbara
    Rich, David Q.
    Pandolfi, Marco
    Harrison, Roy M.
    Hopke, Philip K.
    ENVIRONMENT INTERNATIONAL, 2023, 172
  • [44] A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications
    Leite, ER
    Weber, IT
    Longo, E
    Varela, JA
    ADVANCED MATERIALS, 2000, 12 (13) : 965 - +
  • [45] Influence of the sand particle shape on particle size distribution measured by laser diffraction method
    Polakowski, Cezary
    Sochan, Agata
    Bieganowski, Andrzej
    Ryzak, Magdalena
    Foeldenyi, Rita
    Toth, Judit
    INTERNATIONAL AGROPHYSICS, 2014, 28 (02) : 195 - 200
  • [46] TURBIDIMETRIC METHOD FOR ONLINE DETERMINATION OF LATEX PARTICLE NUMBER AND PARTICLE-SIZE DISTRIBUTION
    ZOLLARS, RL
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1980, 74 (01) : 163 - 172
  • [47] The influence of particle size, shape and particle size distribution on properties of magnetites for the production of toners
    Meisen, U
    Kathrein, H
    IS&T'S NIP15: INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES, 1999, : 556 - 560
  • [48] Effect of particle size and particle size distribution on critical state loci of granular soils
    Manmatharajan, Mathan V.
    Gill, Sartaj
    Liu, Wei
    Ingabire, Edouardine-Pascale
    Sy, Alex
    Ghafghazi, Mason
    CANADIAN GEOTECHNICAL JOURNAL, 2023,
  • [50] Influence of particle size and particle size distribution on MICA filled nylon 6 composite
    Bose, S
    Mahanwar, PA
    JOURNAL OF MATERIALS SCIENCE, 2005, 40 (24) : 6423 - 6428