Ag-doped SrTiO3: Enhanced water splitting for hydrogen production

被引:3
|
作者
Azevedo, Sergio A. [1 ,2 ,3 ,4 ]
Laranjeira, Jose A. S. [1 ]
Silva, Jeronimo F. [1 ]
Longo, Elson [5 ]
Sambrano, Julio R. [1 ]
机构
[1] Sao Paulo State Univ UNESP, Sch Sci, Modeling & Mol Simulat Grp, BR-17033360 Bauru, Brazil
[2] Fed Inst Maranhao IFMA, BR-65950000 Barra Do Corda, MA, Brazil
[3] Maranhense Ctr Coll, FCMA, UNICTR, BR-65950000 Barra Do Corda, MA, Brazil
[4] Univ Fed Paraiba, NPE LACOM, BR-58051900 Joao Pessoa, PB, Brazil
[5] Univ Fed Sao Carlos, CDMF, BR-14801907 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Water-splitting; SrTiO3; Plasmonic effect; Ag-doping; H-2; production; SURFACE; PHOTOCATALYSTS; ADSORPTION; DFT; ROLES; METAL; NO;
D O I
10.1016/j.ijhydene.2024.06.311
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigates the effect of Ag-doping on the (001) surface of SrTiO3 (STO) to enhance hydrogen production via water-splitting employing density functional theory (DFT) simulations. It was found that the heterolytic water dissociation on Ag-doped (001)-STO occurs via a first-order reaction with an energy barrier of 5.74 kJ/mol, representing a reduction of 94% compared to undoped (001)-STO. The Gibbs free energy of H-2 formation catalyzed by Ag-doped (001)-STO is approximately -302 kJ/mol, indicating the spontaneity of this process. Additionally, the surface band gap energy decreases by similar to 2 eV after water-splitting, suggesting charge transfer from the Ag-doped STO to the water and leading to new electron-hole recombination states. This research underscores the potential of Ag-doping in enhancing the efficiency of hydrogen production through water-splitting, contributing to the development of greener and more efficient energy technologies.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 50 条
  • [41] Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO3
    Saadetnejad, Dilara
    Yildirim, Ramazan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (02) : 1116 - 1122
  • [42] Enhancing production of hydrogen and simultaneous degradation of ciprofloxacin over Sn doped SrTiO3 piezocatalyst
    Chen, Zhen
    Liu, Wencong
    Zheng, Liujin
    Chen, Qinqin
    Liu, Yifan
    Lan, Shenyu
    Zhu, Mingshan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 353
  • [43] Influence of doped Ag+ on multifunction characteristics in SrTiO3 ceramics
    Xu, Q
    Chen, W
    Yuan, RZ
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2000, 10 (01) : 69 - 72
  • [44] Optical Absorption in Pure SrTiO3 and Nb Doped SrTiO3
    Tsuda, H.
    Kuraoka, M.
    Matsumoto, D.
    FERROELECTRICS, 2011, 411 : 58 - 61
  • [45] Study on the photocatalytic property of La-doped CoO/SrTiO3 for water decomposition to hydrogen
    Qin, Ya
    Wang, Guiyun
    Wang, Yanji
    CATALYSIS COMMUNICATIONS, 2007, 8 (06) : 926 - 930
  • [46] Current-voltage characteristics of Ag/Nb:SrTiO3/Ag and Au/Nb:SrTiO3/Ag heterostructures
    Bian, Weibai
    Han, Chen
    Jia, Jiqiang
    Liu, Xiaoqin
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2024, 42 (05):
  • [47] Theoretical study on cation codoped SrTiO3 photocatalysts for water splitting
    Fadlallah, M. M.
    Shibl, M. F.
    Vlugt, T. J. H.
    Schwingenschlogl, U.
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (47) : 24342 - 24349
  • [48] Water Splitting on Ti-Oxide-Terminated SrTiO3(001)
    Solokha, Vladyslav
    Garai, Debi
    Wilson, Axel
    Duncan, David A.
    Thakur, Pardeep K.
    Hingerl, Kurt
    Zegenhagen, Jorg
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (28): : 17232 - 17238
  • [49] Photocatalytic Overall Water Splitting by SrTiO3 with Surface Oxygen Vacancies
    Fan, Yanfei
    Liu, Yan
    Cui, Hongyu
    Wang, Wen
    Shang, Qiaoyan
    Shi, Xifeng
    Cui, Guanwei
    Tang, Bo
    NANOMATERIALS, 2020, 10 (12) : 1 - 10
  • [50] Effect of Liquid Phase Plasma Irradiation on Production by Photocatalytic Water Splitting over SrTiO3 Photocatalysts
    Chung, Kyong-Hwan
    Park, Young-Kwon
    Kim, Hangun
    Kim, Byung-Joo
    Jung, Sang-Chul
    CHEMCATCHEM, 2019, 11 (24) : 6451 - 6459