Local Enhanced Transformer Networks for Land Cover Classification With Airborne Multispectral LiDAR Data

被引:0
|
作者
Li, Dilong [1 ]
Zheng, Shenghong [1 ]
Chen, Ziyi [1 ]
Li, Jonathon [2 ]
Wang, Lanying
Du, Jixiang [1 ]
机构
[1] Huaqiao Univ, Fujian Key Lab Big Data Intelligence & Secur, Xiamen Key Lab Comp Vis & Pattern Recognit, Xiamen Key Lab Data Secur & Blockchain Technol,Col, Xiamen 361021, Peoples R China
[2] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
Encoding; Point cloud compression; Semantics; Three-dimensional displays; Laser radar; Land surface; Feature extraction; Airborne multispectral LiDAR; land cover classification; Transformer;
D O I
10.1109/LGRS.2024.3432870
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Transformer networks have demonstrated remarkable performance in point cloud processing tasks. However, balancing local feature aggregation with long-range dependency modeling remains a challenging issue. In this work, we present a local enhanced Transformer network (LETNet) for land cover classification with multispectral LiDAR data. Specifically, we first rethink position encoding in 3-D Transformers and design a novel feature encoding module that embeds comprehensive geometric and semantic information, serving a similar purpose. Then, the proposed local enhanced Transformer module is used to capture the accurate global attention weights and refine the features. Finally, to effectively extract and integrate global features across various scales, an attention-based pooling module is introduced. This module extracts global features from each encoder and decoder layer and constructs a feature pyramid to fuse these multiscale global features. Both quantitative assessments and comparative analyses demonstrate the competitive capability and advanced performance of the LETNet in land cover classification task.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Possibility-Based Method for Urban Land Cover Classification Using Airborne Lidar Data
    Zhao, Danjing
    Ji, Linna
    Yang, Fengbao
    Liu, Xiaoxia
    REMOTE SENSING, 2022, 14 (23)
  • [22] Object-based land cover classification using airborne LiDAR
    Antonarakis, A. S.
    Richards, K. S.
    Brasington, J.
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (06) : 2988 - 2998
  • [23] Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters
    Pan, Suoyan
    Guan, Haiyan
    Chen, Yating
    Yu, Yongtao
    Goncalves, Wesley Nunes
    Marcato Junior, Jose
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 166 : 241 - 254
  • [24] Classification of Multispectral Airborne LiDAR Data Using Geometric and Radiometric Information
    Morsy, Salem
    Shaker, Ahmed
    El-Rabbany, Ahmed
    GEOMATICS, 2022, 2 (03): : 370 - 389
  • [25] Land Cover Classification Method Integrating Spaceborne LiDAR Combined with Multispectral Images
    Huang, Xing
    Hu, Xuyan
    Liu, Weiwei
    Zhao, Hong
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (08):
  • [26] Land Cover Classification Method Integrating Spaceborne LiDAR Combined with Multispectral Images
    Huang X.
    Hu X.
    Liu W.
    Zhao H.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51 (08):
  • [27] Combining single photon and multispectral airborne laser scanning for land cover classification
    Matikainen, Leena
    Karila, Kirsi
    Litkey, Paula
    Ahokas, Eero
    Hyyppa, Juha
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 164 : 200 - 216
  • [28] Land cover type classification study based on airborne LiDAR and Sentinel-2 image data
    Li, Maosen
    You, Haotian
    Lei, Peng
    Liu, Yi
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [29] Airborne small-footprint full-waveform LiDAR data for urban land cover classification
    Qin, Haiming
    Zhou, Weiqi
    Zhao, Wenhui
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [30] Enhancing the Accuracy of Land Cover Classification by Airborne LiDAR Data and WorldView-2 Satellite Imagery
    Wei, Chun-Ta
    Tsai, Ming-Da
    Chang, Yu-Lung
    Wang, Ming-Chih Jason
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (07)