Normalized solutions for nonlinear Schrodinger equations involving mass subcritical and supercritical exponents

被引:0
|
作者
Guo, Qidong [1 ]
He, Rui [1 ]
Li, Benniao [2 ]
Yan, Shusen [3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Jiangxi Normal Univ, Jiangxi Prov Ctr Appl Math, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R China
关键词
Schrodinger equations; Mass subcritical growth; Mass supercritical growth; Local uniqueness; STANDING WAVES; UNIQUENESS; BIFURCATION; EXISTENCE;
D O I
10.1016/j.jde.2024.08.071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
fWe study nonlinear Schrodinger equation -Delta u + (lambda + V (y))u = u(p epsilon-1) in RN, with prescribed mass integral N-R u(2) = a, where lambda is a Lagrange multiplier, V (y) is a real-valued potential, a is an element of R+ is a constant, p pound = (p) over bar +/- epsilon and (p) over bar = 2 + 4/N is the L-2-critical exponent. Bartsch et al. (2021) [1] proved the existence of a solution with the assumption that V decays at infinity and is non-negative. In this paper, we prove that it is the number of the critical points of the potential V that affects the existence and the number of solutions for this problem. We also prove a local uniqueness for the solutions we construct. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:462 / 496
页数:35
相关论文
共 50 条
  • [1] Normalized solutions and mass concentration for supercritical nonlinear Schrodinger equations
    Yang, Jianfu
    Yang, Jinge
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (07) : 1383 - 1412
  • [2] Normalized solutions of mass supercritical Schrodinger equations with potential
    Bartsch, Thomas
    Molle, Riccardo
    Rizzi, Matteo
    Verzini, Gianmaria
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (09) : 1729 - 1756
  • [3] Normalized solutions of mass subcritical Schrodinger equations in exterior domains
    Zhang, Zexin
    Zhang, Zhitao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (03):
  • [4] Normalized solutions to mass supercritical Schrodinger equations with negative potential
    Molle, Riccardo
    Riey, Giuseppe
    Verzini, Gianmaria
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 333 : 302 - 331
  • [5] Normalized Solutions of Mass Subcritical Fractional Schrodinger Equations in Exterior Domains
    Yu, Shubin
    Tang, Chunlei
    Zhang, Ziheng
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
  • [6] Normalized solutions for the mixed dispersion nonlinear Schrodinger equations with four types of potentials and mass subcritical growth
    Ma, Cheng
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (07): : 3759 - 3775
  • [7] Normalized solutions of nonlinear Schrodinger equations
    Bartsch, Thomas
    de Valeriola, Sebastien
    ARCHIV DER MATHEMATIK, 2013, 100 (01) : 75 - 83
  • [8] Large Global Solutions for Nonlinear Schrodinger Equations II, Mass-Supercritical, Energy-Subcritical Cases
    Beceanu, Marius
    Deng, Qingquan
    Soffer, Avy
    Wu, Yifei
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 173 - 237
  • [9] Normalized solutions and mass concentration for supercritical nonlinear Schr¨odinger equations
    Jianfu Yang
    Jinge Yang
    Science China Mathematics, 2022, 65 (07) : 1383 - 1412
  • [10] Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations
    Jianfu Yang
    Jinge Yang
    Science China Mathematics, 2022, 65 : 1383 - 1412