Improving performance in colorectal cancer histology decomposition using deep and ensemble machine learning

被引:0
|
作者
Prezja, Fabi [1 ]
Annala, Leevi [2 ,3 ]
Kiiskinen, Sampsa [1 ]
Lahtinen, Suvi [1 ,4 ]
Ojala, Timo [1 ]
Ruusuvuori, Pekka [5 ,6 ]
Kuopio, Teijo [7 ,8 ]
机构
[1] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla 40014, Finland
[2] Univ Helsinki, Fac Sci, Dept Comp Sci, Helsinki, Finland
[3] Univ Helsinki, Fac Agr & Forestry, Dept Food & Nutr, Helsinki, Finland
[4] Univ Jyvaskyla, Fac Math & Sci, Dept Biol & Environm Sci, Jyvaskyla 40014, Finland
[5] Univ Turku, Canc Res Unit, Inst Biomed, Turku 20014, Finland
[6] Turku Univ Hosp, FICAN West Canc Ctr, Turku 20521, Finland
[7] Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla 40014, Finland
[8] Hosp Nova Cent Finland, Dept Pathol, Jyvaskyla 40620, Finland
关键词
Deep learning; CRC; Histopathology; Biomarkers; Hybrid model; Vision Transformer; Neural Architecture Search; Convolutional Neural Networks; QUANTITATIVE IMAGING BIOMARKERS; NORMALIZATION; ONCOLOGY;
D O I
10.1016/j.heliyon.2024.e37561
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment selection is still being explored. The current gold standard relies on expensive and time-consuming genetic tests. However, recent research highlights the potential of convolutional neural networks (CNNs) to facilitate the extraction of clinically relevant biomarkers from these readily available images. These CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost. The predictive potential of CNN-based biomarkers fundamentally relies on the ability of CNNs to accurately classify diverse tissue types from whole slide microscope images. Consequently, enhancing the accuracy of tissue class decomposition is critical to amplifying the prognostic potential of imaging-based biomarkers. This study introduces a hybrid deep transfer learning and ensemble machine learning model that improves upon previous approaches, including a transformer and neural architecture search baseline for this task. We employed a pairing of the EfficientNetV2 architecture with a random forest classification head. Our model achieved 96.74% accuracy (95% CI: 96.3%-97.1%) on the external test set and 99.89% on the internal test set. Recognizing the potential of these models in the task, we have made them publicly available.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Improving protein fold recognition using triplet network and ensemble deep learning
    Liu, Yan
    Han, Ke
    Zhu, Yi-Heng
    Zhang, Ying
    Shen, Long-Chen
    Song, Jiangning
    Yu, Dong-Jun
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [32] Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework
    Kuo, Chen-Yuan
    Tai, Tsung-Ming
    Lee, Pei-Lin
    Tseng, Chiu-Wang
    Chen, Chieh-Yu
    Chen, Liang-Kung
    Lee, Cheng-Kuang
    Chou, Kun-Hsien
    See, Simon
    Lin, Ching-Po
    FRONTIERS IN PSYCHIATRY, 2021, 12
  • [33] Deep learning classification of lung cancer histology using CT images
    Tafadzwa L. Chaunzwa
    Ahmed Hosny
    Yiwen Xu
    Andrea Shafer
    Nancy Diao
    Michael Lanuti
    David C. Christiani
    Raymond H. Mak
    Hugo J. W. L. Aerts
    Scientific Reports, 11
  • [34] Classification of lung cancer histology images using deep learning.
    Yang, Yan
    Zhen, Tiantian
    Shi, Huijuan
    Xie, Weidong
    Han, Anjia
    Wang, Xunzhang
    CANCER RESEARCH, 2021, 81 (13)
  • [35] Deep learning classification of lung cancer histology using CT images
    Chaunzwa, Tafadzwa L.
    Hosny, Ahmed
    Xu, Yiwen
    Shafer, Andrea
    Diao, Nancy
    Lanuti, Michael
    Christiani, David C.
    Mak, Raymond H.
    Aerts, Hugo J. W. L.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [36] Improving ensemble docking for drug discovery by machine learning
    Wong, Chung F.
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2019, 18 (03):
  • [37] Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learning
    Justin D. Krogue
    Shekoofeh Azizi
    Fraser Tan
    Isabelle Flament-Auvigne
    Trissia Brown
    Markus Plass
    Robert Reihs
    Heimo Müller
    Kurt Zatloukal
    Pema Richeson
    Greg S. Corrado
    Lily H. Peng
    Craig H. Mermel
    Yun Liu
    Po-Hsuan Cameron Chen
    Saurabh Gombar
    Thomas Montine
    Jeanne Shen
    David F. Steiner
    Ellery Wulczyn
    Communications Medicine, 3
  • [38] Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learning
    Krogue, Justin D.
    Azizi, Shekoofeh
    Tan, Fraser
    Flament-Auvigne, Isabelle
    Brown, Trissia
    Plass, Markus
    Reihs, Robert
    Mueller, Heimo
    Zatloukal, Kurt
    Richeson, Pema
    Corrado, Greg S.
    Peng, Lily H.
    Mermel, Craig H.
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Gombar, Saurabh
    Montine, Thomas
    Shen, Jeanne
    Steiner, David F.
    Wulczyn, Ellery
    COMMUNICATIONS MEDICINE, 2023, 3 (01):
  • [39] Arabic Cyberbullying Detection: Enhancing Performance by Using Ensemble Machine Learning
    Haidar, Batoul
    Chamoun, Maroun
    Serhrouchni, Ahmed
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 323 - 327
  • [40] Performance prediction of impact hammer using ensemble machine learning techniques
    Ocak, Ibrahim
    Seker, Sadi Evren
    Rostami, Jamal
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 80 : 269 - 276