Water Crossover in Proton Exchange Membrane Water Electrolysis

被引:0
|
作者
Friedrichs-Schucht, M. [1 ]
Hasche, F. [1 ]
Oezaslan, M. [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Tech Chem, Tech Electrocataly Lab, D-38106 Braunschweig, Germany
关键词
PEM water electrolysis; proton drag coefficient; water crossover; water diffusion; PFSA membrane; ELECTROOSMOTIC DRAG COEFFICIENT; FUEL-CELL; TRANSPORT; ELCTROOSMOSIS; INSIGHTS; MODEL;
D O I
10.1149/1945-7111/ad6213
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Water management is critical for high performance of polymer electrolyte membrane water electrolysis (PEMWE). In this work, we investigated the water crossover for 5 cm2 PEMWE single cell by varying the temperature (40-80 degrees C), current density (0-2 A cm-2 geo), cathode pressure (ambient, 310 kPagauge,inlet), and nitrogen purge rate (50, 100 nccm). Using an advanced gravimetric method, the water crossover to the cathode could be established very accurately and also corrected by the water vapor fraction. Here, we pointed out that the cathode exhaust gas is saturated with water vapor, either from diffusion or by proton drag at low or high current densities, respectively. Very importantly, the water crossover at high current density is controlled by the proton drag and are used to extract the temperature-dependent proton drag coefficient at 1 A cm-2 geo. Our results reveal that the proton drag coefficient increases from 2.5 +/- 0.2 at 40 degrees C to 3.2 +/- 0.2 at 80 degrees C (+28%). Altogether, we have developed a sophisticated gravimetric method to accurately determine the water crossover under PEMWE operating conditions and proposed a model of the temperature-dependent proton drag coefficient. Unravelling the proton drag and diffusion is very important for modeling of water transport in PEMWE.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    ZhiMing Wang
    Chao Xu
    XueYe Wang
    ZhiRong Liao
    XiaoZe Du
    [J]. Science China Technological Sciences, 2021, 64 : 1555 - 1566
  • [32] Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures
    Linkous, CA
    Anderson, HR
    Kopitzke, RW
    Nelson, GL
    [J]. HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 559 - 567
  • [33] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    Wang ZhiMing
    Xu Chao
    Wang XueYe
    Liao ZhiRong
    Du XiaoZe
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1555 - 1566
  • [34] Effect of power quality on the design of proton exchange membrane water electrolysis systems
    Koponen, Joonas
    Ruuskanen, Vesa
    Hehemann, Michael
    Rauls, Edward
    Kosonen, Antti
    Ahola, Jero
    Stolten, Detlef
    [J]. APPLIED ENERGY, 2020, 279
  • [35] Proton Exchange Membrane Water Electrolysis Modeling for System Simulation and Degradation Analysis
    Goessling, Soenke
    Stypka, Sebastian
    Bahr, Matthias
    Oberschachtsiek, Bernd
    Heinzel, Angelika
    [J]. CHEMIE INGENIEUR TECHNIK, 2018, 90 (10) : 1437 - 1442
  • [36] Acid-stable manganese oxides for proton exchange membrane water electrolysis
    Kong, Shuang
    Li, Ailong
    Long, Jun
    Adachi, Kiyohiro
    Hashizume, Daisuke
    Jiang, Qike
    Fushimi, Kazuna
    Ooka, Hideshi
    Xiao, Jianping
    Nakamura, Ryuhei
    [J]. NATURE CATALYSIS, 2024, 7 (03) : 252 - 261
  • [37] RuO2 Nanorods as an Electrocatalyst for Proton Exchange Membrane Water Electrolysis
    Cross, Michael W.
    Smith, Richard P., III
    Varhue, Walter J.
    [J]. MICROMACHINES, 2021, 12 (11)
  • [38] Accelerated stress testing in proton exchange membrane water electrolysis critical review
    Urbano, E.
    Pahon, E.
    Yousfi-Steiner, N.
    Guillou, M.
    [J]. JOURNAL OF POWER SOURCES, 2024, 623
  • [39] Acid-stable manganese oxides for proton exchange membrane water electrolysis
    Shuang Kong
    Ailong Li
    Jun Long
    Kiyohiro Adachi
    Daisuke Hashizume
    Qike Jiang
    Kazuna Fushimi
    Hideshi Ooka
    Jianping Xiao
    Ryuhei Nakamura
    [J]. Nature Catalysis, 2024, 7 : 252 - 261
  • [40] Proton exchange membrane water electrolysis: Modeling for hydrogen flow rate control
    Maamouri, Rebah
    Guilbert, Damien
    Zasadzinski, Michel
    Rafaralahy, Hugues
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (11) : 7676 - 7700