Leveraging Variational Autoencoders for Parameterized MMSE Estimation

被引:4
|
作者
Baur, Michael [1 ]
Fesl, Benedikt [1 ]
Utschick, Wolfgang [1 ]
机构
[1] Tech Univ Munich, TUM Sch Computat Informat & Technol, D-80333 Munich, Germany
关键词
Estimation; Training; Inverse problems; Data models; Bayes methods; Noise measurement; Vectors; Parameter estimation; variational autoencoder; conditional mean estimator; generative model; inverse problem; CHANNEL ESTIMATION; MODEL;
D O I
10.1109/TSP.2024.3439097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this manuscript, we propose to use a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator. The variational autoencoder models the underlying unknown data distribution as conditionally Gaussian, yielding the conditional first and second moments of the estimand, given a noisy observation. The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem. We propose three estimator variants that differ in their access to ground-truth data during the training and estimation phases. The proposed estimator variant trained solely on noisy observations is particularly noteworthy as it does not require access to ground-truth data during training or estimation. We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator, connecting the training objective and the resulting estimation performance. Furthermore, the resulting bound reveals that the proposed estimator entails a bias-variance tradeoff, which is well-known in the estimation literature. As an example application, we portray channel estimation, allowing for a structured covariance matrix parameterization and low-complexity implementation. Nevertheless, the proposed framework is not limited to channel estimation but can be applied to a broad class of estimation problems. Extensive numerical simulations first validate the theoretical analysis of the proposed variational autoencoder-based estimators and then demonstrate excellent estimation performance compared to related classical and machine learning-based state-of-the-art estimators.
引用
收藏
页码:3731 / 3744
页数:14
相关论文
共 50 条
  • [31] Efficient Evolution of Variational Autoencoders
    Hajewski, Jeff
    Oliveira, Suely
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1541 - 1550
  • [32] Resampled Priors for Variational Autoencoders
    Bauer, Matthias
    Mnih, Andriy
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 66 - 75
  • [33] Variational Graph Normalized AutoEncoders
    Ahn, Seong Jin
    Kim, MyoungHo
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2827 - 2831
  • [34] Inference Suboptimality in Variational Autoencoders
    Cremer, Chris
    Li, Xuechen
    Duvenaud, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [35] Variational Autoencoders for Collaborative Filtering
    Liang, Dawen
    Krishnan, Rahul G.
    Hoffman, Matthew D.
    Jebara, Tony
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 689 - 698
  • [36] An Evolutionary Approach to Variational Autoencoders
    Hajewski, Jeff
    Oliveira, Suely
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 71 - 77
  • [37] Disentangling Disentanglement in Variational Autoencoders
    Mathieu, Emile
    Rainforth, Tom
    Siddharth, N.
    Teh, Yee Whye
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [38] A Geometric Perspective on Variational Autoencoders
    Chadebec, Clement
    Allassonniere, Stephanie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [39] Shedding Light on Variational Autoencoders
    Ruiz Vargas, J. C.
    Novaes, S. F.
    Cobe, R.
    Iope, R.
    Stanzani, S.
    Tomei, T. R.
    2018 XLIV LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2018), 2018, : 294 - 298
  • [40] Rethinking Controllable Variational Autoencoders
    Shao, Huajie
    Yang, Yifei
    Lin, Haohong
    Lin, Longzhong
    Chen, Yizhuo
    Yang, Qinmin
    Zhao, Han
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19228 - 19237