Structure of zero-divisors to go up to related ideals

被引:0
|
作者
Jung, Da Woon [1 ]
Lee, Chang Ik [1 ]
Lee, Yang [2 ,3 ]
Piao, Zhelin [2 ]
机构
[1] Pusan Natl Univ, Finance Fishery Manufacture Ind Math Ctr Big Data, Busan 46241, South Korea
[2] Yanbian Univ, Dept Math, Yanji, Peoples R China
[3] Pusan Natl Univ, Inst Plast Informat & Energy Mat, Busan, South Korea
基金
新加坡国家研究基金会;
关键词
Conditions (*) and (**); essential right ideal; IFP ring; nilpotent element; semiprime; right (left) singular; zero-dividing ideal; zero-dividing matrix; RINGS;
D O I
10.1080/00927872.2024.2376167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are many ways for zero-dividing polynomials to go up to zero-dividing ideals when the base rings are IFP. The importance of these in ring theory leads us to consider the following ring conditions and study new useful roles of matrices for ring theory. Let R be a ring and a,b is an element of R\{0}. The first is the condition (*) that if ab = 0 then Ib = 0 for some nonzero ideal I subset of RaR of R or aJ = 0 for some nonzero ideal J subset of RbR of R. It is shown that from given any IFP ring, there can be constructed a non-IFP ring with the condition (*). We prove that a semiprime ring R with the condition (*) is both right and left nonsingular. The second is the condition (**) that if ab = 0 then IJ = 0 for some nonzero ideals I subset of RaR and J subset of RbR of R. We prove that every ring can be a subring of rings with the condition (**), that if R is an irreducible ring with the condition (**) then R is either a domain or non-semiprime, and that the condition (**) passes to polynomial rings when the base ring is semiprime. Various sorts of examples are given to illustrate and delimit the results obtained.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] On zero-divisors of semimodules and semialgebras
    Nasehpour, Peyman
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) : 413 - 428
  • [12] ZERO-DIVISORS OF CONTENT ALGEBRAS
    Nasehpour, Peyman
    ARCHIVUM MATHEMATICUM, 2010, 46 (04): : 237 - 249
  • [13] Pruffer conditions in rings with zero-divisors
    Glaz, S
    ARITHMETICAL PROPERTIES OF COMMUTATIVE RINGS AND MONOIDS, 2005, 241 : 272 - 281
  • [14] ZERO-DIVISORS IN COMPLETIONS OF NONCOMMUTATIVE RINGS
    JORDAN, DA
    ISRAEL JOURNAL OF MATHEMATICS, 1992, 80 (03) : 351 - 358
  • [15] SP-rings with zero-divisors
    Ahmed, Malik Tusif
    Dumitrescu, Tiberiu
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4435 - 4443
  • [16] Multiplicative Isometries and Isometric Zero-Divisors
    Aleman, Alexandru
    Duren, Peter
    Martin, Maria J.
    Vukotic, Dragan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (05): : 961 - 974
  • [17] CONTRACTIVE ZERO-DIVISORS IN BERGMAN SPACES
    DUREN, P
    KHAVINSON, D
    SHAPIRO, HS
    SUNDBERG, C
    PACIFIC JOURNAL OF MATHEMATICS, 1993, 157 (01) : 37 - 56
  • [18] ON CONSTANT ZERO-DIVISORS OF LINEAR POLYNOMIALS
    Kim, Byung-Ok
    Kwak, Tai Keun
    Lee, Yang
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (03) : 1098 - 1117
  • [19] A note on zero-divisors of commutative rings
    Filipowicz, M.
    Kepczyk, M.
    ARABIAN JOURNAL OF MATHEMATICS, 2012, 1 (02) : 191 - 194
  • [20] On the problem of zero-divisors in Artinian rings
    Kadu, Ganesh S.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4957 - 4969