Well-Ordered Nanoparticles/Block Copolymer Nanosheets with a Controllable Location of Nanoparticles

被引:4
|
作者
Li, Jinlan [1 ,2 ]
Yu, Xin [1 ,2 ]
Zhang, Jianing [1 ,3 ]
Jin, Jing [1 ,3 ]
Pan, Yanxiong [1 ,2 ]
Ji, Xiangling [1 ,2 ]
Jiang, Wei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Wuhan Text Univ, Sch Mat Sci & Engn, Wuhan 430200, Peoples R China
关键词
nanoparticles; block copolymer; emulsion droplets; assembly; lambda(eff); nanosheets; NANOCOMPOSITE THIN-FILMS; INORGANIC NANOPARTICLES; BLOCK-COPOLYMERS; GOLD NANOPARTICLES; ASSEMBLIES; ENTROPY; NANORODS; DRIVEN; SIZE; NANOSTRUCTURES;
D O I
10.1021/acsami.4c08523
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Precisely controlling the spatial distributions and arrangements of metal nanoparticles (NPs) into block copolymers is of great importance for fabricating novel nanomaterials with the desired optical and electronic properties. Herein, we develop a simple yet versatile strategy to prepare organic/inorganic nanosheets formed by the coassembly of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and PS tethered gold nanoparticles (AuNPs@PS) within emulsion droplets. The arrangement of the AuNPs@PS building blocks within the block copolymers (BCP)/AuNPs nanosheets can be adjusted by tuning the effective size ratio (lambda(eff)), which can be controlled by the core diameter of the AuNPs and the molecular weight of the PS. Furthermore, the content of the AuNPs is also another essential parameter to manipulate the structures of the nanosheets with the specific lambda(eff). Thus, the BCP/AuNPs hybrid nanosheets with controllable distributions and arrangements of the AuNPs were successfully prepared via tuning of lambda(eff) and the content of AuNPs. This study provides a facile way to fabricate well-ordered hybrid nanosheets.
引用
收藏
页码:41332 / 41340
页数:9
相关论文
共 50 条
  • [31] Well-ordered self-assembled nanostructures of block copolymer films via synergistic integration of chemoepitaxy and zone annealing
    Zhang, Liangshun
    Liu, Lingling
    Lin, Jiaping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (01) : 498 - 508
  • [32] Synthesis and Electrical Properties of Well-Ordered Layered α-MoO3 Nanosheets
    R. Naouel
    H. Dhaouadi
    F. Touati
    N. Gharbi
    Nano-Micro Letters, 2011, 3 : 242 - 248
  • [33] Synthesis and Electrical Properties of Well-Ordered Layered α-MoO3 Nanosheets
    R.Naouel
    H.Dhaouadi
    F.Touati
    N.Gharbi
    Nano-Micro Letters, 2011, 3 (04) : 242 - 248
  • [34] Block copolymer-directed assembly of nanoparticles: Forming mesoscopically ordered hybrid materials
    Thompson, RB
    Ginzburg, VV
    Matsen, MW
    Balazs, AC
    MACROMOLECULES, 2002, 35 (03) : 1060 - 1071
  • [35] Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces
    Zou, Shan
    Hong, Rui
    Emrick, Todd
    Walker, Gilbert C.
    LANGMUIR, 2007, 23 (04) : 1612 - 1614
  • [36] Hexagonally ordered nanoparticles templated using a block copolymer film through Coulombic interactions
    Lee, Wonjoo
    Lee, Seung Yong
    Zhang, Xin
    Rabin, Oded
    Briber, R. M.
    NANOTECHNOLOGY, 2013, 24 (04)
  • [37] Synthesis and Electrical Properties of Well-Ordered Layered α-MoO3 Nanosheets
    Naouel, R.
    Dhaouadi, H.
    Touati, F.
    Gharbi, N.
    NANO-MICRO LETTERS, 2011, 3 (04) : 242 - 248
  • [38] Synthesis of well-ordered mesoporous nanoparticles of TiO2 from Ilmenite with enhanced photocatalytic activity
    Lavasani, Seyed Hosein
    Sarvi, Mehdi Nasiri
    Azimi, Ebrahim
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11):
  • [39] Barium titanate nanoparticles in block copolymer
    Lee, T
    Yao, N
    Imai, H
    Aksay, IA
    LANGMUIR, 2001, 17 (24) : 7656 - 7663
  • [40] Revisiting glycerol electrooxidation by applying derivative voltammetry: From well-ordered bulk Pt to bimetallic nanoparticles
    Caneppele, Gabriella L.
    Martins, Caue A.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 865