In summary, Ni(OH)2 nanoflowers (Ni(OH)2 NFs) and Ni(OH)2 nanoflowers grown on Ni foan (Ni(OH)2 NFs@NF) were synthesised using a one-step hydrothermal process. In energy storage applications, the Ni(OH)2 NFs@NF can be a useful electrode material. When utilized as a supercapacitor electrode material, the Ni(OH)2 NFs@NF shows a discharge specific capacity of 100.0 F g-1, which is greater than that of pure Ni(OH)2 NFs (27.3 F g-1) at an applied current density of 0.4 A g-1. In lithium-ion batteries (LIBs), the Ni(OH)2 NFs@NF composite is used as an anode and has primordial discharge and charge capacities of 1595.2 and 1104.3 mAh g-1, individually. Lithium-ion batteries are made possible by the Ni(OH)2 NFs@NF anode, which has an amazing capacity of 213.8 mAh g-1 after 50 cycles. Ni(OH)2 NFs@NF are employed as sodium ion batteries(SIBs) anodes, and Ni(OH)2 NFs@NF has 440.0 and 217.9 mAh g-1 for the primal discharge and charge capacities, individually. The Ni(OH)2 NFs@NF anode with a high capacity of 122.7 mAh g-1 following 50 cycling numbers allows for construction of lithium ion batteries,Ni(OH)2 NFs@NF has better sodium and lithium ion storage capacity than Ni(OH)2 NFs.The content of this study is intended to provide a reference for future research on nickel hydroxide flexible electrodes. Nickel hydroxide nanoflowers are synthesized by one step hydrothermal method. Ni(OH)2 NFs and flexible Ni(OH)2 NFs@NF are characterized by SEM,TEM,XRD and XPS. They are prepared into electrodes assembled into supercapacitors, lithium-ion batteries and sodium-ion batteries, and the electrochemical properties of the two electrodes are compared. The results show that Ni(OH)2 NFs@NF is superior to Ni(OH)2 NFs. image