DANet: A Domain Alignment Network for Low-Light Image Enhancement

被引:0
|
作者
Li, Qiao [1 ]
Jiang, Bin [1 ]
Bo, Xiaochen [2 ]
Yang, Chao [1 ]
Wu, Xu [3 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Acad Mil Med Sci, Beijing 100850, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
关键词
low-light image enhancement; multi-domain alignment; convolution-transformer module;
D O I
10.3390/electronics13152954
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose restoring low-light images suffering from severe degradation using a deep-learning approach. A significant domain gap exists between low-light and real images, which previous methods have failed to address with domain alignment. To tackle this, we introduce a domain alignment network leveraging dual encoders and a domain alignment loss. Specifically, we train two dual encoders to transform low-light and real images into two latent spaces and align these spaces using a domain alignment loss. Additionally, we design a Convolution-Transformer module (CTM) during the encoding process to comprehensively extract both local and global features. Experimental results on four benchmark datasets demonstrate that our proposed A Domain Alignment Network(DANet) method outperforms state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [22] Frequency-aware network for low-light image enhancement
    Shang, Kai
    Shao, Mingwen
    Qiao, Yuanjian
    Liu, Huan
    COMPUTERS & GRAPHICS-UK, 2024, 118 : 210 - 219
  • [23] Adversarial Context Aggregation Network for Low-Light Image Enhancement
    Shin, Yong-Goo
    Sagong, Min-Cheol
    Yeo, Yoon-Jae
    Ko, Sung-Jea
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 617 - 621
  • [24] A deep Retinex network for underwater low-light image enhancement
    Kai Ji
    Weimin Lei
    Wei Zhang
    Machine Vision and Applications, 2023, 34
  • [25] RECURRENT ATTENTIVE DECOMPOSITION NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Gao, Haoyu
    Zhang, Lin
    Zhang, Shunli
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3818 - 3822
  • [26] Low-Light Image Enhancement Using a Simple Network Structure
    Matsui, Takuro
    Ikehara, Masaaki
    IEEE ACCESS, 2023, 11 : 65507 - 65516
  • [27] Feature spatial pyramid network for low-light image enhancement
    Song, Xijuan
    Huang, Jijiang
    Cao, Jianzhong
    Song, Dawei
    VISUAL COMPUTER, 2023, 39 (01): : 489 - 499
  • [28] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [29] Channel splitting attention network for low-light image enhancement
    Lu, Bibo
    Pang, Zebang
    Gu, Yanan
    Zheng, Yanmei
    IET IMAGE PROCESSING, 2022, 16 (05) : 1403 - 1414
  • [30] Deep Color Consistent Network for Low-Light Image Enhancement
    Zhang, Zhao
    Zheng, Huan
    Hong, Richang
    Xu, Mingliang
    Yan, Shuicheng
    Wang, Meng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1889 - 1898