Thermochromic polymer blends

被引:7
|
作者
Saju, Sreehari K. [1 ]
Puthirath, Anand B. [1 ]
Wang, Shancheng [2 ]
Tsafack, Thierry [1 ]
Beagle, Lucas K. [3 ]
Baydin, Andrey [4 ,5 ]
Chakingal, Nithya [1 ]
Komatsu, Natsumi [4 ]
Tay, Fuyang [4 ,6 ]
Sharma, Arvin [1 ]
Sreenivasan, Rohini [1 ]
Kono, Junichiro [1 ,4 ]
Vajtai, Robert [1 ]
Glavin, Nicholas R. [3 ]
Long, Yi [2 ]
Ajayan, Pulickel M. [1 ]
机构
[1] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
[2] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
[3] Wright Patterson AFB, Mat & Mfg Directorate, AFRL, Dayton, OH 45433 USA
[4] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[5] Rice Univ, Smalley Curl Inst, Houston, TX 77005 USA
[6] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
关键词
THERMAL-DEGRADATION; LITHIUM; WINDOWS; FILMS;
D O I
10.1016/j.joule.2024.07.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Smart windows using thermochromic materials provide an excellent thermal management system over broad temperature ranges, leading to significant energy savings. Existing thermochromic materials face challenges, including difficulty in application, degradation during use, and limited durability. Here, we report a simple salted polymer blend system, consisting of poly(dimethylsiloxane), poly (ethylene oxide), and lithium perchlorate, that shows excellent thermochromic properties across an accessible temperature window and remarkable durability. The reversible temperature dependence of optical transmittance of the films arises due to the miscibility of the constituent polymers at room temperature, leading to high transparency, and the gradual phase separation and opaqueness with temperature rise. The easy-to-fabricate, stable polymer system can be a viable and cost-effective alternative to inorganic thermochromic materials such as vanadium dioxide for many applications.
引用
收藏
页码:2696 / 2714
页数:20
相关论文
共 50 条
  • [41] CONDUCTING POLYMER BLENDS
    LAAKSO, J
    OSTERHOLM, JE
    NYHOLM, P
    SYNTHETIC METALS, 1989, 28 (1-2) : C467 - C471
  • [42] POLYMER BLENDS IN SOLUTION
    JOANNY, JF
    LEIBLER, L
    PHASE TRANSITIONS IN SOFT CONDENSED MATTER, 1989, 211 : 297 - 299
  • [43] FATIGUE IN POLYMER BLENDS
    MANSON, JA
    HERTZBERG, RW
    CONNELLY, GC
    HUANG, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 188 (AUG): : 125 - PMSE
  • [44] THEORY OF POLYMER BLENDS
    CURRO, JG
    SCHWEIZER, KS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 199 : 153 - PMSE
  • [45] Mechanochromic polymer blends
    Pucci, Andrea
    Ruggeri, Giacomo
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (23) : 8282 - 8291
  • [46] COVULCANIZATION OF POLYMER BLENDS
    INOUE, T
    SHOMURA, F
    OUGIZAWA, T
    MIYASAKA, K
    RUBBER CHEMISTRY AND TECHNOLOGY, 1985, 58 (05): : 873 - 884
  • [47] ECONOMICS OF POLYMER BLENDS
    UTRACKI, LA
    POLYMER ENGINEERING AND SCIENCE, 1982, 22 (17): : 1166 - 1175
  • [48] Interphases in polymer blends
    Eklind, Hans
    Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 1996, (1161):
  • [49] STRUCTURED POLYMER BLENDS
    MEIJER, HEH
    LEMSTRA, PJ
    ELEMANS, PHM
    MAKROMOLEKULARE CHEMIE-MACROMOLECULAR SYMPOSIA, 1988, 16 : 113 - 135
  • [50] Nanostructured polymer blends
    Freemantle, M
    CHEMICAL & ENGINEERING NEWS, 2002, 80 (36) : 12 - 12