Machine Learning Methods and Time Series: A Through Forecasting Study via Simulation and USA Inflation Analysis

被引:0
|
作者
Boesch, Klaus [1 ]
Ziegelmann, Flavio A. [2 ]
机构
[1] Sul Rio Grandense Fed Inst, Charqueadas, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Dept Stat, Porto Alegre, RS, Brazil
关键词
Time series; Machine learning; WLadaENet; Forecasting; Inflation; SELECTION; MODELS; LASSO;
D O I
10.1007/s10614-024-10675-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
Modern problems in Economics have tremendously benefited from the ever increasing amount of available information. Hence, most of the recent econometric approaches have focused on how to model and estimate relationships between covariates and dependent variables under this high-dimensional scenario. Particularly in the time series context, one usually aims to produce valuable forecasts of the dependent variables. In this paper our main goal is two-folded: i) employ several modern computationally highly intensive Machine Learning (ML) methods for achieving time series forecasting accuracy under a high-dimensional covariates setting; ii) propose a novel variation of the Elastic Net (ENet), the Weighted Lag Adaptive ENet (WLadaENet), which combines the popular Ridge Regression with a regularization method tailored for time series, the WLAdaLASSO (Konzen and Ziegelmann in J Forecast 35:592-612, 2016). To achieve our goal, we carry out Monte Carlo simulation studies as well as a real data analysis of USA inflation with a forecast range from January 2013 to December 2023. In our Monte Carlo implementations, the WLadaENet presents a solid performance both in terms of variable selection when the true model is sparse and in terms of forecasting accuracy even when the model is not sparse and nonlinearities are included. Our approach also performs reasonably well to forecast the USA inflation for different horizons ahead. Since the chosen period includes the Covid-19 crisis, a sub-period analysis is carried out, not leading to a uniformly best forecaster.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Forecasting performance of machine learning, time series, and hybrid methods for low- and high-frequency time series
    Ozdemir, Ozancan
    Yozgatligil, Ceylan
    STATISTICA NEERLANDICA, 2024, 78 (02) : 441 - 474
  • [22] Fuzzy long term forecasting through machine learning and symbolic representations of time series
    Hugueney, B
    Bouchon-Meunier, B
    Hébrail, G
    COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATIONS, 2005, : 109 - 123
  • [23] Time Series Forecasting Utilizing Automated Machine Learning (AutoML): A Comparative Analysis Study on Diverse Datasets
    Westergaard, George
    Erden, Utku
    Mateo, Omar Abdallah
    Lampo, Sullaiman Musah
    Akinci, Tahir Cetin
    Topsakal, Oguzhan
    INFORMATION, 2024, 15 (01)
  • [24] ANALYSIS AND FORECASTING OF TEMPERATURE USING TIME SERIES FORECASTING METHODS A Case Study of Mus
    Tugal, Ihsan
    Sevgin, Fatih
    THERMAL SCIENCE, 2023, 27 (4B): : 3081 - 3088
  • [25] Forecasting daily natural gas consumption with regression, time series and machine learning based methods
    Yucesan, Melih
    Pekel, Engin
    Celik, Erkan
    Gul, Muhammet
    Serin, Faruk
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 4605 - 4620
  • [26] Forecasting daily natural gas consumption with regression, time series and machine learning based methods
    Yucesan, Melih
    Pekel, Engin
    Celik, Erkan
    Gul, Muhammet
    Serin, Faruk
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 4605 - 4620
  • [27] Univariate Time Series Forecasting via Interactive Learning
    Li, Yu
    Li, Haonan
    Wang, Peng
    Cui, Xu
    Zhang, Zhenguo
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 343 - 355
  • [28] Forecasting China's inflation rate: Evidence from machine learning methods
    Xu, Xingfu
    Li, Shufei
    Liu, Wei-han
    INTERNATIONAL REVIEW OF FINANCE, 2025, 25 (01)
  • [29] Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods
    Medeiros, Marcelo C.
    Vasconcelos, Gabriel F. R.
    Veiga, Alvaro
    Zilberman, Eduardo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (01) : 98 - 119
  • [30] Forecasting time series combining machine learning and Box-Jenkins time series
    Montañés, E
    Quevedo, JR
    Prieto, MM
    Menéndez, CO
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2002, PROCEEDINGS, 2002, 2527 : 491 - 499