A Gödel-Dugundji-style theorem for the minimal structural logic

被引:0
|
作者
Pawlowski, Pawel [1 ]
Ferguson, Thomas M. [2 ]
Gertler, Ethan [3 ]
机构
[1] Univ Ghent, CLPS, Ghent, Belgium
[2] Rensselaer Polytech Inst, Dept Cognit Sci, Troy, NY USA
[3] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY USA
关键词
Non-deterministic matrices; non-deterministic semantics; substructural logic; Dugundji's theorem; NONDETERMINISTIC SEMANTICS; MODAL SEMANTICS;
D O I
10.1093/logcom/exae045
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces a sequent calculus, $\textbf{M}_{\textbf{S}}$, the minimal structural logic, which includes all structural rules while excluding operational ones. Despite its limited calculus, $\textbf{M}_{\textbf{S}}$ unexpectedly shares a property with intuitionistic logic and modal logics between $\textsf{S1}$ and $\textsf{S5}$: it lacks sound and complete finitely-valued (deterministic) semantics. Mirroring G & ouml;del's and Dugundji's findings, we demonstrate that $\textbf{M}_{\textbf{S}}$ does possess a natural finitely-valued non-deterministic semantics. In fact, we show that $\textbf{M}_{\textbf{S}}$ is sound and complete with respect to any semantics belonging to a natural class of maximally permissive non-deterministic matrices. We close by examining the case of subsystems of $\textbf{M}_{\textbf{S}}$, including the "structural kernels" of the strict-tolerant and tolerant-strict logics $\textbf{ST}$ and $\textbf{TS}$, and strengthen this result to also preclude finitely-valued deterministic semantics with respect to variable designated value frameworks.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] The completeness theorem of Gödel1. An introduction to mathematical logic
    S. M. Srivastava
    Resonance, 2001, 6 (7) : 29 - 41
  • [2] MINLOG: A minimal logic theorem prover
    Slaney, J
    AUTOMATED DEDUCTION - CADE-14, 1997, 1249 : 268 - 271
  • [3] A note on Gödel fuzzy logic
    K. Bendová
    Soft Computing, 1999, 2 (4) : 167 - 167
  • [4] Ten problems in Gödel logic
    Juan P. Aguilera
    Matthias Baaz
    Soft Computing, 2017, 21 : 149 - 152
  • [5] Monotone operators on Gödel logic
    Oliver Fasching
    Matthias Baaz
    Archive for Mathematical Logic, 2014, 53 : 261 - 284
  • [6] KURT GÖDEL AND THE LOGIC OF CONCEPTS
    Kostic, Jovana
    Vujosevic, Slobodan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2024, 115 (129): : 1 - 19
  • [7] The Modal Logic of Gödel Sentences
    Hirohiko Kushida
    Journal of Philosophical Logic, 2010, 39 : 577 - 590
  • [8] Generic Gӧdel’s Incompleteness Theorem
    A. N. Rybalov
    Algebra and Logic, 2017, 56 : 232 - 235
  • [9] A Kotas-Style Characterisation of Minimal Discussive Logic
    Mruczek-Nasieniewska, Krystyna
    Nasieniewski, Marek
    AXIOMS, 2019, 8 (04)
  • [10] Axiomatization of Crisp Gödel Modal Logic
    Ricardo Oscar Rodriguez
    Amanda Vidal
    Studia Logica, 2021, 109 : 367 - 395