Axiomatization of Crisp Gödel Modal Logic

被引:0
|
作者
Ricardo Oscar Rodriguez
Amanda Vidal
机构
[1] UBA-CONICET,UBA, FCEyN, Departamento de Computación
[2] Inst. de Invest. en Cs. de la Computación,Department of Theoretical Computer Science
[3] Institute of Computer Science of the Czech Academy of Sciences,undefined
来源
Studia Logica | 2021年 / 109卷
关键词
Modal many-valued logics; Axiomatic systems; Gödel logic; Modal Gödel logic; Lattice-valued Kripke semantics;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the modal logic with both □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Box $$\end{document} and ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document} arising from Kripke models with a crisp accessibility and whose propositions are valued over the standard Gödel algebra [0,1]G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]_G$$\end{document}. We provide an axiomatic system extending the one from Caicedo and Rodriguez (J Logic Comput 25(1):37–55, 2015) for models with a valued accessibility with Dunn axiom from positive modal logics, and show it is strongly complete with respect to the intended semantics. The axiomatizations of the most usual frame restrictions are given too. We also prove that in the studied logic it is not possible to get ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document} as an abbreviation of □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Box $$\end{document}, nor vice-versa, showing that indeed the axiomatic system we present does not coincide with any of the mono-modal fragments previously axiomatized in the literature.
引用
收藏
页码:367 / 395
页数:28
相关论文
共 50 条