On critical Ambrosetti-Prodi type problems involving mixed operator

被引:0
|
作者
Sharma, Lovelesh [1 ]
Mukherjee, Tuhina [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342030, Rajasthan, India
关键词
Mixed local-nonlocal operators; Ambrosetti-Prodi problem; Variational methods; Existence and multiplicity of solutions; EXISTENCE; DISPERSAL;
D O I
10.1007/s41808-024-00298-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article contains the study of the following problem with critical growth that involves the classical Laplacian and fractional Laplacian operators precisely {Lu=lambda u + u(+)(2)*(-1) + (t(phi 1)+h) in Omega, u = 0 in R-n \ Omega, where Omega subset of R-n, n >= 3 is a bounded domain with smooth boundary partial derivative Omega, u(+) = max{u, 0}, lambda > 0 is a real parameter, 2* = 2n/n-2 and L = -Delta+(-Delta)(s), for s is an element of(0,1). Here phi(1) is the first eigenfunction of L with homogeneous Dirichlet boundary condition, t is an element of R and h is an element of L-infinity(Omega) satisfies integral(Omega)h(phi 1) dx = 0. We establish existence and multiplicity results for the above problem, based on different ranges of the spectrum of L, using the Linking Theorem.
引用
收藏
页码:1187 / 1216
页数:30
相关论文
共 50 条
  • [41] AMBROSETTI-PRODI TYPE RESULT TO A NEUMANN PROBLEM VIA A TOPOLOGICAL APPROACH
    Sovrano, Elisa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (02): : 345 - 355
  • [42] A variational approach to an Ambrosetti-Prodi type problem for a system of elliptic equations
    De, Morais Filho, Daniel Cordeiro
    Nonlinear Analysis, Theory, Methods and Applications, 1996, 26 (10): : 1655 - 1668
  • [43] Results of Ambrosetti-Prodi type for non-selfadjoint elliptic operators
    Sirakov, Boyan
    Tomei, Carlos
    Zaccur, Andre
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (07): : 1757 - 1772
  • [44] ON SPIKES CONCENTRATING ON LINES FOR A NEUMANN SUPERLINEAR AMBROSETTI-PRODI TYPE PROBLEM
    Bendahou, Imene
    Khemiri, Zied
    Mahmoudi, Fethi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 2367 - 2391
  • [45] Geometric Aspects of Ambrosetti-Prodi Operators with Lipschitz Nonlinearities
    Tomei, Carlos
    Zaccur, Andre
    ANALYSIS AND TOPOLOGY IN NONLINEAR DIFFERENTIAL EQUATIONS: A TRIBUTE TO BERNHARD RUF ON THE OCCASION OF HIS 60TH BIRTHDAY, 2014, 85 : 445 - 456
  • [46] On periodic Ambrosetti-Prodi-type problems
    Minhos, Feliz
    Oliveira, Nuno
    AIMS MATHEMATICS, 2023, 8 (06): : 12986 - 12999
  • [47] BOUNDARY CONCENTRATIONS ON SEGMENTS FOR A NEUMANN AMBROSETTI-PRODI PROBLEM
    Ao, W. E. I. W. E. I.
    Fu, M. E. N. G. D. I. E.
    Liu, C. H. A. O.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 4991 - 5015
  • [48] Ambrosetti-Prodi type result in semi-linear damped beam equations
    An, YK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) : 471 - 483
  • [49] A quasi-linear Neumann problem of Ambrosetti-Prodi type on extension domains
    Velez-Santiago, Alejandro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 160 : 191 - 210
  • [50] Local uniqueness for the multi-bump solutions to the problem of Ambrosetti-Prodi type
    Chen, Haixia
    Chen, Mengyao
    Li, Qi
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)